
. . . . '•

: .. · : .. ·;: ·::(\:-'.->:/.:.-:.··:

.TRS-BO®
Madel m

Disk System Owner's Manual

Mini-Disk Operation
TRSDOS™ Disk Operating System

Disk BASIC Programming Language

,1:cttit·i\~}: ~~~~~~

The FCC Wants You to Know ...
This equipment generates and uses radio frequency energy. If not installed and used prop
erly, that is, in strict accordance with the manufacturer's instructions, it may cause interfer
ence to radio and television reception.

It has been type tested and found to comply with the limits for a Class B computing
device in accordance with the specifications in Subpart J of Part 15 of FCC Rules, which are
designed to provide reasonable protection against such interference in a residential instal
lation. However, there is no guarantee that interference will not occur in a particular
installation.

If this equipment does cause interference to radio or television reception, which can be
determined by turning the equipment off and on, the user is encouraged to try to correct the
interference by one or more of the following measures:

• Reorient the receiving antenna

• Relocate the computer with respect to the receiver

• Move the computer away from the receiver

• Plug the computer into a different outlet so that computer and receiver are on different
branch circuits.

If necessary, you should consult the dealer or an experienced radio/television technician for
additional suggestions. You may find the following booklet prepared by the Federal Com
munications Commission helpful: How to Identify and Resolve Radio-TV Interference
Problems.

This booklet is available from the US Government Printing Office, Washington, DC
20402, Stock No. 004-000-00345-4.

Warning
This equipment has been certified to comply with the limits for a Class B computing device,
pursuant to Subpart J of Part 15 of FCC Rules. Only peripherals (computer input/output
devices, terminals, printers, etc.) certified to comply with the Class B limits may be attached
to this computer. Operation with non-certified peripherals is likely to result in interference to
radio and TV reception.

TRS-BO@
Model Ill

Disk
,_. System

Owner,s
Manual

~ llad10 lhaeli
MA DIVISION OF TANDY CORPORATION

FORT WORTH, TEXAS 76102

TRS-80 Model III Disk System Owner's Man
ual: © 1980 Tandy Corporation, Fort Worth,
Texas 76102 U.S.A. All Rights Reserved.

Reproduction or use, without express written per
mission from Tandy Corporation or any portion of
this manual is prohibited. While reasonable
efforts have been taken in the preparation of this
manual to assure its accuracy, Tandy Corporation
assumes no liability resulting from any errors or
omissions in this manual or from the use of the
information obtained herein.

Model Ill TRSDOSt,t Operating System:
© 1980 Tandy Corporation, Fort Worth, Texas
76102 U.S.A. All Rights Reserved.

Model III BASIC Software:© 1980 Tandy Cor
poration and Microsoft. All Rights Reserved.

The system software in the Model Ill microcom
puter is retained in a read-only memory (ROM)
format. All portions of this system software,
whether in the ROM format or other source code
form format, and the ROM circuitry are copy
righted and are the proprietary and trade secret
information of Tandy Corporation and Microsoft.
Use, reproductions, or publication of any portion
of this material without the prior written authori
zation by Tandy Corporation is strictly prohibited.

10 9 8 7 6 5 4 3 2

-·--

OWNER'S MANUAL

To Our Customers
Congratulations on your purchase of the Model Ill Disk System. We think it's a
valuable tool which will save you work as well as give you hours of enjoyment
(or maybe both at once). You'll have all the power of the non-disk Model III,
plus the following features:

• Your Computer can now be controlled by TRsoos:1,,:, the powerful TRS-80 Disk
Operating System. TRSDOS is included on a diskette with the Disk System.

• Using TRSDOS, you can run a wide variety of programs, such as the Disk BASIC

interpreter included on the TRSDOS diskette.

• Each "system" diskette has approximately 126,720 bytes of storage available
for your own programs and data; each "data" diskette has 178,944 bytes
available.

• You can load and save data at the approximate rate of 250,000 bits per second.

• Your system can continue to grow in power and convenience. When Radio
Shack issues improvements and enhancements to the system programs, you
can "install" them simply by obtaining a new release of the TRSDOS diskette.

Model III Manuals
Publications related to the use of the Model Ill Disk System:

I. Model Ill Disk System Owner's Manual (this manual). We'll call it the "Disk
Manual'' for short.

2. Model Ill Disk System Quick Reference Card.

3. Model Ill Operation and BASIC Language Re.ference Manual, the "Model Ill
Manual" for short.

4. Model Ill BASIC Quick Reference Card.

For Disk Operation:

This Disk Manual supplements the Model lll Manual. Use the Disk Manual as
the primary source of information; we'll tell you when to refer to the non-disk
Model Ill Manual.

For Non-Disk Operation:

To use the Computer as a non-disk system, all you need is the Model III
Manual.

For Programming Information:

The Model Ill Manual contains most of the programming information, except
that which pertains to disk input/output. In this manual, we will assume that you

TRS-80 MODEL Ill DISK SYSTEM

are familiar with the BASIC programming definitions and details given in the
Model III Manual.

About This Manual
The Model III Disk System is intended for use by novices as well as
experienced computer operators and programmers. In designing and writing this
Disk Manual, we've tried to define and satisfy the needs of both groups:

• Novices who might prefer a sequential presentation which emphasizes
procedures and explains the purpose of various features.

• Experienced users who might prefer a more analytical presentation which
makes it easy to find specific information.

In this manual, you'll find information that should satisfy your needs, whichever
group you might belong to.

The "Sample Sessions" are especially geared for novices, while the Technical
Information chapters are for the more experienced users.

Keep in mind, however, that it isn't necessary to read the entire manual to
operate the Disk System. If you are only interested in Disk BASIC, for example,
read the Operation section of this book and then turn directly to the Disk BASIC

section. You can then go back to the TRSDOS section when you need to.

Special Terms
Even in the non-technical sections of this manual, we've had to use numerous
special terms. Rather than scattering and repeating definitions throughout the
book, we have used the following convention which we hope you'll find
helpful.

Special terms which are fully defined in another part of the manual are printed in
boldface. Look up the word or phrase in the Index; this will tell you where the
word is fully defined.

ii

OWNER'S MANUAL

Contents
Operation

Installation . 1

Operation . 4

Diskettes . 5
D Description D Care

System Start-Up . 6

Important Disk Operations . 8
□ BACKUP □ FORMAT □ Model I/ Ill Conversion

Disk BASIC ••• 11
D Quick Instructions D Start-Up D Loading D Baud Rate

Troubleshooting and Maintenance 13

Notation and Abbreviations 14

Specifications .. . 15

TRSDOS

Description of TRsoos .••.•..•.••.•••.••..•.••..•••••••••.•••.•.. • 17
D Roles D BASIC DRAM Use D Memory Map

Using TRSDOS ..•.••..•..•..•.••..••••..••.•...•.•..•..••.•..•... 20

Commands ... 20
D Entering D Syntax D Forms

File Specification .. 22

File Name .. 23

Drive Specification .. 23

Password .. 24

A Few Important Definitions 24

Library Commands ... 26

Utility Commands ... 67

Technical Information ... 74
D Disk Organization D File Structure D Systems Routines (l/0)

TRSDOS Error Codes/Messages 90

iii

TRS-80 MODEL Ill DISK SYSTEM

Disk BASIC

Introduction .. 91

Enhancements to Model III Disk BASIC ••••••••••••••••••••••••••••• 93
D Abbreviations D Commands

Disk-Related Features .. 116
D File Manipulation D File Access

Methods of File Access .. 145
D Sr-.::1uential D Random

Disk BASIC Error Codes/Messages 155

Index ... 157

Customer Information .. 160

Warranty . Back Cover

iv

··~

OPERATION

Installation
First set up the Computer according to the instructions in the Model III Manual.

If you have a one- or two-drive system, installation is now complete. The built
in drives should be ready for use.

If you have a three- or four-drive system, you need to connect the external
drives.

External Disk Drives
The two external drives are not interchangeable. They have different Radio
Shack Catalog Numbers and a few internal differences.

First External Drive Purchased
(Includes Cable)

Second External Drive Purchased

System
Name

"Drive 2/3"

"Drive 2"

Catalog
Number

26-1164

26-1161

The 26-1164 drive may be used as Drive 2 or 3, depending on the number of
drives in the system. In a three-drive system, it is always Drive 2 (the last
drive). In a four-drive system, it is always Drive 3 (again, the last drive).

The 26-1161 drive may only be used in a four-drive system, in which it must be
Drive 2.

1. Locate the flat ''ribbon'' cable that was included with the 26-1164 drive.
Notice that it has a single plug on one end, and two plugs clustered at the
other end. See Figure 1 for plug labels.

2. Connect the solitary "Computer" plug to the Disk Expansion Jack on the
bottom rear of the Computer. See Figure 2.

3. Now refer to Figure 3. Connect the external drive(s) to the other end of the
cable, as follows:

}-A. If you have one external drive (26-1164):
Connect it to the "Drive 2" plug near the middle of the ribbon cable.

3-B. If you have two external drives (26-1 164 and 26-116 I):
Connect the 26-1164 to the '' Drive 3'' plug on the end of the cable.
Connect the 26-1161 to the "Drive 2" plug near the middle of the cable.

4. Plug the external drive(s) into an appropriate source of AC power. Power
requirements are specified on the unit and in the specifications given in this
manual.

You are now ready to start the Disk System.

TRS-80 MODEL Ill DISK SYSTEM

Computer Plug

-
I ~

Drive 2 Plug Drive 3 Pl ug

~

I 11

I,, ~

Figure 1. External Disk Cable with Plugs Labeled.

///I// , ... ////11/11//li e

8///11/

Figure 2. Connection of the External Disk Cable to the Model Ill.

2

MINI-DISK (REAR VIEW)--1it----

Attach the plug so the cable exits
toward the rear of the Computer.

EDGE CARD PLUGS

ON/OFF SWITCH

GUIDE PIN

Figure 3. Connection of external disk drives.

Q

OPERATION

3

TRS-80 MODEL Ill DISK SYSTEM

Operation
First. take a few minutes to become familiar with the various elements of your
Disk System. Refer to Figures 4 and 5. This is very important. If you try to use
the Computer without having a little background information. you could damage
a diskette.

G)

®

Figure 4. The Model Ill Disk System with External Drives (optional/extra).

Ci: Drive 0. The rnsoos "system diskette" goes
in this drive.

Ct Drives 1, 2, and 3. These drives may
contain "data diskettes." Data diskettes are
described briefly in this chapter.

:I Drive Select LED. When a drive is being
accessed, its LED lights up.

.; Drive Door. To insert or remove a diskette,
open this door. Never remove a diskette
while the LED is lit, or while the diskette
contains open files.

4

CS) Reset Button. When you press this button,
the Computer will attempt to load the
operating system software from Drive 0. The
rnsoos diskette should be in Drive O when
you press this button.

® Power Switch. All drives should be empty
when you turn the Computer on or off.
Otherwise, the information on the diskettes
could be destroyed.

OPERATION

Figure 5. A Diskette. (Catalog Number 26-305, 26-405, or 26-406)

CD Storage Envelope. While a diskette is not in
use. keep it here.

@ Write Protect Notch. When this is covered,
the disk-drives cannot write (change infor
mation) on the diskette. Do not pinch the tab
into the notch when you apply it. If the tab
becomes indented, the disk drive may not
sense that the disk is write-protected. Leave
the notch uncovered if you want to save or
change information on the diskette.

@ Jacket. The diskette is permanently sealed
inside this protective jacket. Do not attempt
to remove it.

Diskettes

@ Read/Write Window. The disk drive
accesses the diskette surface through this
window. Don't touch the diskette surface.

® Label. To write on this label, use only a felt
tipped pen. Any other writing implement
might damage the diskette.

In general, handle diskettes carefully. using the same precautions you use with
tape cassettes and high-fidelity records. A small indentation. dust particle, or
scratch can render all or part of a diskette unreadable- permanently.

• Keep the diskette in its storage envelope whenever it is not in one of the
drives.

• Do not place a diskette in the drive while you are turning the system on or off.

• Keep diskettes away from magnetic fields (transformers, AC motors, magnets,
rvs. radios, etc.). Strong magnetic fields will erase data stored on a diskette.

G)

5

TRS-80 MODEL Ill DISK SYSTEM

• Handle diskettes by the jacket only. Do not touch any of the exposed surfaces.
Don't try to wipe or clean the diskette surface; it scratches easily.

• Keep diskettes out of direct sunlight and away from heat.

• Avoid contamination of diskettes with cigarette ashes. dust or other particles.

• Do not write directly on the diskette jacket with a hard point device such as a
ball point pen or lead pencil; use a felt tip pen only.

• Store diskettes in a vertical file folder on a shelf where they are protected from
pressure to their sides Uust as phono records are stored).

• In very dusty environments, you may need to provide filtered air to the
computer room.

Tips on Labeling Diskettes

Each diskette has a permanent label on its jacket. This label is for ""vital
statistics·· that will never change. For example. to help keep track of diskettes,
it's a good idea to assign a unique number to each diskette. Write such a number
on the permanent label. You might also put your name on the diskette. and
record the date when the diskette was first put into use. Remember, use only a
felt tip pen for marking.

This "'permanent" label is not a good place to record the contents of the diskette
since that will change. and you don't want to be erasing or scratching out
information from this label.

System Start-Up
1. Turn all peripherals on.

2. Turn the Computer on. Wait until all disk drive motors stop.

3. Locate the TRSDOS diskette that was supplied with the Disk System. Insert it
into Drive 0, with the label side facing up and the read/write window
pointing into the drive slot. See Figure 6.

4. When the diskette is fully inserted. close the drive door.

5. Press RESET. The Computer should now load TRsoos and begin the start-up
dialog described in the next section.

If nothing happens on the Display, or if the message: DI SK ETTE? or NOT A
SYSTEM DI SK is displayed, check the following:

• Are you using a TRSDOS ''system·· diskette?

• Is the diskette properly inserted into Drive O'?

• If external drives are present. are they properly connected and turned on?

6

OPERATION

Figure 6. Inserting a Diskette.

If you can't find the problem, refer to the Troubleshooting and Maintenance
chapter for further suggestions.

TRSDOS Start-Up Dialog
Whenever you reset the Model Ill Disk System, it loads TRSDOS and begins the
start-up dialog.

I. The TRSDOS version number and date of creation will be displayed, followed
by the amount of RAM (32K or 48K) and the number of drives in the system.

2. TRsoos will prompt you to enter the date in the form MMIDDiYY. For example.
07/04/80 for July 4, 1980. Type in the correct date and press (ffilIB). rnsoos

will not continue until you type in the date correctly.

3. TRSDOS will prompt you to enter the time in 24-hour form HH:MM ss. For
example, 14:45:00 for 2:45 p.m. Type in the correct time and press (ENTER). If
you don't wish to set the time, simply press (ENTER) at the beginning of the
line. TRSDOS will set the time to 00:00:00.

4. TRSDOS will now display the message, TRSDOS READY

Whenever this is displayed, you are in the TRSDOS READY mode, and you may
type in a TRsoos command.

7

TRS-80 MODEL Ill DISK SYSTEM

Important Disk Operations
In this section we will describe three very important operations:

1 . Duplicating the TRSDOS diskette (BACKUP)

2. Initializing a data diskette (FORMAT)

3. Converting files from Model I to Model Ill TRSDOS (CONVERT).

All new customers should complete the TRsoos BACKUP procedure now; multi
drive customers should also complete the FORMAT operation for a few diskettes.
Detailed information is provided later in this manual; here we will simply
outline the procedures.

Making a BACKUP (Duplicate) ofTRSDOS
Your first operation should be to duplicate the TRsoos diskette you received
from Radio Shack. The TRSDOS diskette contains a utility program called
BACKUP to accomplish this.

1. Locate the TRsoos diskette and a new, blank diskette. The TRSDOS diskette
will be referred to as the "source," while the blank one will be called the
"destination," during BACKUP.

2. Start TRsoos as explained in the previous section. TRSDOS READY should be
displayed.

3. Type: BACKUP (ENTER)

4. TRSDOS will now load and start BACKUP. It will ask you:

SOURCE DRIVE NUMBER?

Specify the drive which contains the original TRSDOS diskette by typing:

Ql (ENTER)

5. Next TRSDOS will ask: DESTINATION DRil.lE NUMBER?

Now specify the drive which will be used for making the duplicate TRsoos. If
you have two or more drives in your system, type: HENTER)

6. TRSDOS will ask: SOURCE DI SK MASTER PASSWORD?

Type: PASS~WRD (ENTER)

(PASSWORD is the password of the supplied diskette.)

7. Now the duplication process will begin.

8

If the destination diskette is not formatted, BACKUP will format it before
continuing. (Before any diskette can be used, it must be initialized or
"formatted" - the data regions defined and labeled, and a table of contents
or "directory" created.)

If you are using a single-drive system, TRSDOS will prompt you to swap
source and destination diskettes several times during the formatting/backup
process.

After a single-drive BACKUP, TRSDOS will display the message:

INSERT SYSTEM DISKETTE (ENTER)

Be sure you have a TRSDOS diskette in Drive 0, then press (ENTER).

The duplication process is now complete. We suggest you save the original
TRSDOS and use the duplicate as your working copy. If anything happens to the
working copy, you can make another one from the original.

Making a Data Diskette (FORMAT)
This section applies to multi-drive systems only.

Drive O must always contain a TRSDOS diskette, so the Computer can have
access to the system programs stored there. Much of the storage capacity of this
diskette is taken up by the system programs.

However, the other drives in the system may contain "data" diskettes which
have no system programs. All of the storage capacity of such diskettes is
available for your programs and data.

The FORMAT utility program takes a diskette and initializes or "formats" it.
If the diskette was previously formatted, all prior information can be lost.
The resultant diskette contains no system files and may only be used in
Drive 1, 2 or 3.

1. In the TRSDOS READY mode, type: FORMAT CfNTER)

2. TRSDOS will start the formatter program and ask you a series of questions:

FORMAT WHICH DRIVE?

Insert a blank diskette into Drive I. Type: 1 (ENTER)

DISKETTE NAME?

This name will serve as an internal label for the diskette. Type in any
appropriate name of one to eight letters and numbers, starting with a letter.
Press (ENTER) at the end of the name.

MASTER PASSWORD?

The password may be from one to eight letters and numbers, starting with a
letter. Press (ENTER) at the end of the password.

Use of the password allows BACKUP, PROT, and PURGE access to all non
system files. Unless special protection is needed, we suggest you use the
password PASSWORD. Whatever password you select, don't forget it!

9

TRS-80 MODEL Ill DISK SYSTEM

If the diskette contains data, TRSDOS will warn you:

DISKETTE CONTAINS DATA, USE DISK OR NOT?

The warning is needed since FORMAT erases all previous information from the
diskette. Type N (ENTER) to cancel FORMAT; type y (ENTE]) or u (ENTER) to
continue it.

3. TRSDOS will now format and verify the diskette. The data diskette will then
be ready for use in Drive 1, 2, or 3.

Model I/III Conversion (CONVERT)
In general, Model I TRSDOS diskettes cannot be used in a Model III Disk
System. However. Model III rnsoos includes a special program. CONVERT, to
read a Model I TRSoos diskette and copy its non-system files onto a Model III
TRsoos diskette.

In two-drive systems, the files must be copied onto a Model III system diskette:
in three- or four-drive systems, the files may be copied onto a data diskette.

Here are abbreviated instructions for using this program. For further details. see
CONVERT.

1. Using a Model I Disk System, remove all passwords from the diskette to be
converted. You can do this with the PROT command. described in the Model I
rnsoos!Disk BASIC Owner's Manual.

2. Start Model III TRSDOS.

3. Place the Model I diskette in Drive I. 2 or 3. (In two-drive systems. use
Drive 1; in three- or four-drive systems. Drive 2.)

4. In three- or four-drive systems, place a Model III data diskette in Drive 1.

5. Type: CONt,IERT (ENTER)

4. The conversion program will start by asking for the source drive number.
Type in the number of the drive containing the Model I diskette. then press
(ENTER).

5. Next. the conversion program will ask for the destination drive number. Type
in the number of the drive containing the Model Ill diskette. then press
(ENTER). (In two-drive systems. use Drive 0: in three- or four-drive systems.
Drive I.)

6. Now all the non-system files will be converted and copied onto the
destination diskette. As each file is copied. its name will be displayed.

7. When the process is completed. you may remove the Model I diskette. It is
unchanged by the CONVERT program. The destination diskette contains the
converted files.

8. To restore password protection to the converted tiles. you may use the PRUT

or ATTRIB command.

10

OPERATION

Disk BASIC

Quick Instructions for Using Disk BASIC
In this section we 'II "walk you" through the following procedures:

1. Starting Disk BASIC

2. Running a simple program

3. Saving a program in a disk file

4. Loading a program from a disk file

For programming information, see the Disk BASIC section of this manual.
Here we are showing procedures only.

Starting Disk BASIC
Under TRSDOS READY, type: BASIC (ENTER)

The Computer will load and start BASIC. First. it will ask two questions.
Press (ENTER) in response to each of them.

HOW MANY FILES? (ENTER)
MEMORY SIZE? (ENTER)

A heading will be displayed, followed by:

READY

You may now begin using Disk BASIC.

Saving a Program
You should have a program in memory, and be in BASic's READY mode. Type:

SAl,JE "PROGRAM" (ENTER)

BASIC should now save the program in a disk file we arbitrarily named
"PROGRAM." Any other suitable file name would do.

Loading a Program
For this sample session, we will load the program just saved.

First type: NEW (ENTER) to erase it from memory. (This is to prove that it can be
retrieved from the disk file.)

11

TRS-80 MODEL Ill DISK SYSTEM

Now type: LOAD II PROGRAM 11 (ENTER) and BASIC will load the specified
program.

You may now list it and run it.

For further information on using Disk BASIC, see Section 3 of this manual.

Setting the Cassette Baud Rate under Disk
BASIC
TRSDOS sets the cassette baud rate to High. If you would like to change this, use
the following TRSDOS command:

PATCH BASIC/CMD <AD0=5202,FIND=00,CHG=FF) (ENTER)

Consequently, you will be prompted with: CASS? whenever you start Disk
BASIC.

You may then type either H (High) or L (Low) to choose the rate you need.

To change the system diskette back to its original state (i.e., no CASS?), simply
use the TRSDOS PATCH command again but reverse the FIND and CHG values.

12

Troubleshooting and Maintenance
If you have problems operating your Model III Disk System, please check the
following symptoms and cures, and check the corresponding table in your
Model III Manual.

If you can't solve the problem, take the unit to your local Radio Shack. We'll
have it fixed and returned to you as soon as possible.

Symptom Cure
Disk drive motors run Check external drive connection sequence.
continuously when the Computer Drive 26-1164 must always be the last
is turned on. external drive.

Computer will not load TRSDOS. 1. Make sure you have inserted the
rnsoos diskette properly in Drive 0.

2. Make sure all peripherals are properly
connected.

Error Messages Look up the message in the TRSDOS or
BASIC Error Message Section. The "cure"
should be listed.

Frequent disk 110 errors 1. Diskette is partially erased. Backup the
diskette, then re-format it.

2. Diskette is worn out. Use backup copy, if
available, to make a new working copy.

3. Disk drives need cleaning or alignment
by Radio Shack service technicians.

Maintenance
For reliable operation, the disk drives must be kept clean and properly aligned.
These procedures should be done by Radio Shack service technicians, according
to the following schedule:

Degree of Use

Commercial data processing
environment

Occasional home use

Maintenance Interval

Every month for medium use.

Every 8- 10 months; more often if
needed.

For further instructions, see the Troubleshooting and Maintenance section in
your Model III Manual.

13

TRS-80 MODEL Ill DISK SYSTEM

Notation and Abbreviations
For the sake of clarity and brevity, we've used some special notation and type
styles in this book.

CAPITALS and punctuation

indicate material which must be entered exactly as it appears. (The only
punctuation symbols not entered are ellipses, explained below.) For example,
in the line:

DUMP LISTER (START= 7000,END = 7100, TRA = 7004)
every letter and character should be typed as indicated.

lowercase italics

represent words, letters, characters or values you supply from a set of acceptable
values for a particular command. For example, the line:

LIST filename
indicates that you can supply any valid file specification after LIST.

Ellipsis indicates that the preceding items can be repeated. For example:

ATTRIB filename (option, .. .)
indicates that several options may be repeated inside the parentheses.

\I)

This special symbol is used occasionally to indicate a blank-space character
(ASCll code 32 decimal, 20 hexadecimal).

PRINT "bHblb!"

X'nnnn'

Indicates that nnnn is a hexadecimal number. All other numbers in the text
of this book are in decimal form, unless otherwise noted.

X'7000'
indicates the hexadecimal value 1000 (decimal 28672).

COMPUTER TYPE

Any words, letters, or numbers that are displayed on the screen will be in
computer type (dot-matrix). Uppercase letters are used; however. your screen at
times may display lowercase letters instead.

14

Specifications
Diskettes

Diskette Organization
(Formatted Diskette)

Operating Temperature

Power Requirements
(External Drives)

5 1/4" mini-diskettes
Radio Shack Catalog
Number 26-305,
26-405 (package of three),
or 26-406 (package of 10)

Single-sided
Double-density
40 Tracks
18 Sectors/Track
256 Bytes/Sector

OPERATION

55 to 80 Degrees Fahrenheit
13 to 27 Degrees Celsius

120 VAC, 60 Hz, 28 VA (240 VAC, 50
Hz, Australian; 220 V AC, 50 Hz,
European)

15

Description of TRSDOS

What Is TRSDOS?
TRsoos (pronounced "TRISs-ooss") stands for "TRS-80 Disk Operating System."
It fulfills three roles:

I . Master Program

2. Command Interpreter

3. Program Manager

As the master program, TRSDOS enables the microprocessor and its various
components to interact efficiently. The components include:

• Random Access Memory (RAM). TRsoos reserves space for its own needs and
allocates space for user programs.

• Disk Drives. TRsoos interfaces with the disk hardware and provides a file
system for storing system and user data on diskettes.

• Input/output devices. These include the keyboard, video display, printer, and
RS-232-C equipment.

TRsoos is also a command interpreter. Whenever it displays TRSDOS READY,

you may enter commands that control how the system works. These are known
as "library" commands.

In its role as program manager, TRSDOS will load and run system or user
programs. During this time, the system or user program is in control of the
Computer.

Figure 7 illustrates the relationships between these three roles.

Where Does BASIC Fit In?
Referring to Figure 7, you 'II see that Disk BASIC falls under the "language
package'' category.

Disk BASIC consists of some general enhancements to Model III BASIC, plus the
disk input/output capability. It uses Model III BASIC (stored in ROM) whenever
possible. For instance, the Model llI BASIC ROM includes all of the mathematical
functions.

If you're used to the non-disk system, there's one difference you should
understand from the beginning: In the non-disk system, BASIC is in control when
you start-up. In the disk system, however, TRsoos is in control when you start
up. You have to tell TRsoos to load and run BASIC. Only then can you begin
running a program written in BASIC.

17

TRS-80 MODEL Ill DISK SYSTEM

How TRSDOS Uses RAM
TRsoos is stored on the system diskette included with your Disk System. Each
time the Computer is turned on or reset, the TRSDOS master program is loaded
into RAM so it can take charge.

TRSDOS occupies approximately 40,000 bytes of space on the diskette; however,
only a portion of that is in RAM at once. This is possible because TRSDOS is
divided into several independent "modules."

The "resident" module is in memory at all times. It consists of input/output
drivers, tables, the command interpreter, and other essential routines.

Additional modules are loaded as needed, and replaced (or "overlaid") by other
modules when they are no longer needed.

Note: After you enter a library or utility command, you will usually hear
TRSDOS accessing the system disk. It is loading an overlay module which
contains the code necessary to complete the command.

The Memory Map in Figure 8 illustrates how TRSDos utilizes the available
memory space.

18

Master Program

/
Program Manager Command

Interpreter

/I~
System Utility
Programs (FORMAT,
BACKUP, etc.)

Figure 7. rnsoos Roles.

ROM

TRSDOS

DEBUG

BASIC,

OTHER
PROGRAMS

"DO"

' '

,.

Language packages
(Disk BASIC,
Editor/ Assembler,
etc.)

a

4000H

5200H

5500H

DOS OVERLAYS

7000H

FORMAT

8000H

END - 180H

'------------1-- END
Figure 8. rnsoos Memory Map

(32K)
(BFFFH)

Z-80
User
Programs

(48K)
(FFFFH)

19

TRS-80 MODEL Ill DISK SYSTEM

Using TRSDOS

Entering a Command
Whenever the TRSDOS prompt,

TRSDOS READY

is displayed, you can type in a command, which can be no more than 63
characters in length. You must press (ENTER) to end the line. TRSDOS will then
"accept" the command.

For example, type: CLS (ENTER) TRSDOS will clear the Display and the TRSDOS

READY prompt will reappear.

In general, your commands will require more than one word. For example, to
kill (delete) a file named MYNAME, you have to specify the command and the
filename.

KI LL MYNAME (ENTER)

tells TRSDOS to find the file named MYNAME, eliminate it from the diskette, and
release the space previously occupied by that file.

Whenever you type in a line, TRSDos follows this procedure:

1. First it checks to see if what you've typed is the name of a TRSDOS command.
If it is, TRSDOS executes it immediately.

2. If what you typed is not a TRSDOS command, then TRSDOS will check to see if
it's the name of a program file on one of the drives.

3. When searching for a file, TRSDOS looks first through Drive 0, then Drive 1,
etc., unless you include an particular drive specification with the file name
-or specify the MASTER command (see Library Commands).

If TRSDOS finds a specified user file, it will load and execute the file if it is a
program file. Otherwise, you' II get an error message.

Command Syntax
Command syntax is a command's general form (like the grammar or structure of
an English sentence). The syntax tells how to use keywords (such as DIR, LIST,

CREA TE, etc.) together with the necessary parameters and punctuation.

If you need help remembering the syntax form of a specific command while
you're operating TRSDOS, type in:

HELP command (ENTER)

20

command should be the specific Library Command you're having trouble with.
TRSDOS will give you the syntax format as well as a brief definition of the
command.

Commands (Syntax Forms)

No-file commands

One-file commands

21

TRS-80 MODEL Ill DISK SYSTEM

Two-file commands

' ,,:,':,':½,/!,', ,

. tt1.111111a.11(/:lllen;1m~ deli111lt~i,tllijna11.1e (ol1tions) comment
< /,, , : ,z.> , , ',','..'~' , ',_,'

filename is. a st1ndard.1asoOs file specification.

delimiteds a blank space ..
optioqs-See d,nnmon·above.

,,,' ,,"

File Specification
The only way to store information on a diskette is to put it in a disk file.
Afterwards. that information can be retrieved via the file name you gave the file
when you created or renamed it.

A file specification has the general form:

. fif~namelext.~f S:weril~d •• · .
. . tilenam;·,~~isf~~f:~]i;tt~;sfr,llbwedby up to seven optlJ11~J:·ti

or number$.

... /exti,anopfion!H1a;m~~extens1on: 'ext' is a sequence of
leftersor numb.ersi$tarting.with a leUer .

. p8$SWQrdi~ an opHo.ijalpassword; 'password' is a
.. • eigllt fetters ttr:llP."1bers, starting With a letter.

Note: There can be no blank spaces inside a file specification. TRSDOS

terminates the file specification at the first blank space.

For example: FI LEA/T)<T. MANAGER: 3 references the file named FILEAITXT

with the password MANAGER, on Drive 3.

22

The name, extension, and drive-specification all contribute to the uniqueness of
a file specification. The password does not. It simply controls access to the file.

File Names
A file name consists of a name and an optional name extension. For the name,
you can choose any letter, followed by up to seven additional numbers or letters.
To use a name extension, start with a diagonal slash/ and add no more than
three numbers or letters; however, the first character must be a letter.

For example:

MODEL3/TXT
NAMES/Al2
TEST

INVENTORY
AUGUST/A IS
TEST!

DATA! I/BAS
WAREHOUS
TEST I/A

are all valid and distinct file names.

Although name extensions are optional, they are useful for identifying what type
of data is in the file. For example, you might want to use the following set of
extensions:

!BAS
!TXT
/CMD
/DAT

for BASIC program
for ASC!I text
for machine-language command file
for data

One advantage of using extensions is that you can tell by just looking at the
directory what kind of information a file contains.

Another advantage is that TRSDOS can recognize certain extensions. For
example, if a file has the extension 1CMD, the TRSDOS will load and attempt to
execute that file when you type: filename (ENTER) omitting the extension ;CMD.

Drive Specification
If you give TRSDOS a command such as: KI LL TEST/ A TRSDOS will search for
the file TEST/A first in Drive 0, then in Drive I, 2, and finally in Drive 3 until it
finds the file.

Anytime you omit a drive-specification. TRSDOS will follow this sequence,
unless you use the MASTER command.

It is possible to tell TRsoos exactly which drive you want to use by specifying
the drive. A drive specification consists of a colon followed by one of the digits
0, 1,2, or 3, corresponding to one of the four drives you might be using.

For example: KI LL TEST/ A: 3 tells TRSDOS delete the file TEST/A on Drive 3
only.

23

TRS-80 MODEL Ill DISK SYSTEM

Anytime TRSDOS has to open a file (e.g., to list it for you), it will follow the
same sequence. When TRSDOS has to write a file, it will skip over any write
protected diskettes.

Password
You can protect a file from unauthorized access and use by assigning passwords
to the file. That way, a person cannot gain access to a file without using the
appropriate password.

It's important to realize that every file has a password, even if you didn't specify
it when the file was created. In such instances, the password becomes eight
blank spaces. In this case, the file becomes unprotected - anyone can gain total
access simply by referring to the filename.

TRSDOS allows you to assign two passwords to a file:

• An "Update word," which grants total access to the information

• An "Access word," which grants limited access to the information (see
ATTRIB)

When you create a file, the Update and Access words are both set equal to the
password you specify. You can change them later with the ATTRIB command.

A password consists of a period followed by one to eight letters or numbers. If
you do not assign a password to a file, TRSDOS uses a default password of eight
blanks.

For example, suppose you have a file named SECRET/BAS. and the file has
MYNAME as an update and access word. Then the command: KI LL SECRETS/
BAS will not cause the file to be killed. You must include the password MYNAME

in the file specification.

Suppose a file is named DOMAIN/BAS and has blanks for the password. Then the
command: KILL DOMAIN/BAS,GUESS will not be obeyed, since GUESS is not
the password.

A Few Important Definitions

System vs. Data Diskettes

A system diskette is one which contains the TRSDOS disk operating system
software. Subject to space limitations, it may also contain your own files. A
system diskette must always be in Drive O while the Computer is in use.

A data diskette, on the other hand, does not contain the operating system
software, and therefore cannot be used in Drive 0. It may be used in Drive 1, 2
or 3. Such a diskette has a maximum of space available for storing your own
programs and data.

24

System, Program, and Data Files

System files include the TRSDOS operating system software, the BASIC language
interpreter, the FORMAT, BACKUP and CONVERT utilities, and other software
which is released by Radio Shack. These files appear in the Directory with an
"S" attribute. (See DIR)

Program files are stored in a special format which allows them to be loaded and
executed directly from the TRSDOS READY level. For example, the BASIC

interpreter is a program file.

Data files include all files that are not in the correct format to allow loading and
executing from TRSDOS READY. For example, a program written in BASIC will be
stored as a data file. It can be loaded and executed from BASIC, but not from
TRSDOS READY.

Master Passwords

Each diskette is initially assigned a master password during FORMAT or BACKUP.

(Your master password for TRSDOS is PASSWORD.) The master password allows
you to use BACKUP, PURGE, and PROT on a diskette. Using a diskette's master
password, you may change it (see PROT).

25

TRS-80 MODEL Ill DISK SYSTEM

TRSDOS Library Commands

APPEND
Append files

,".<"" ,,', (-, ; ,:",, ,, ,,:,,, ,,'\'.;

APPEND ··.so.UJ'J:t,~fir11. d:estlnatlon~lile . .

· Bt1t1F4e•li;ei$the•1~~~f;;;;i.;;fpr:J~e.1ue which is to ~e
. copied ortto the ertd:911he·other file.

f/eslin.11tioJJ-fileis thest)ecific·ation I.or the file which is tt)
ttreeive:t~e a,p~~age: fad~itf.on).

Noter;ttoth s~uirti~.il,i: ~tl'ad-filosmust b.e in ASCII
... .. Jt)rJRaUiil •. lit;,s;tJ{$~tCPJD{1r~ms saved with the A

o.ption). · · ··· · · · · ·

APPEND copies the contents of the source-file onto the end of the destination-file.
The source-file is unaffected, while the destination-file is extended to include the
source-file.

Note: The logical record lengths must match. See DIR for more information on
logical record lengths.

Examples

APPEND WORDFILE/C WORDFILE/D

A copy of woRDFILE/C is appended to WORDFILE/0.

APPEND REGION1/DAT TOTAL/DAT.GUESS

A copy of REGION I/DAT is appended to TOTAL/DAT, which is protected with the
password GUESS.

Sample Uses

Suppose you have two data files, PAYROLL/A and PAYROLL/B.

26

PAYROLL/A PAYROLL/B

♦ + ♦ ♦ ♦ ♦ ♦ Atf-ins, I-LR,
Baf,er, J,B, ♦ + ♦ ♦ ♦ ♦ ♦ t

Cha111bers, C,P,
Dodson, M,W,
KicRa111on, T, Y,

♦ + ♦ ♦ ♦

♦ ♦ ♦ ♦ ♦ ♦ ♦

♦ ♦ ♦ ♦ +

You can combine the two files with the command:

APPEND PAYROLL/B PAYROLL/A

PAYROLL/A will now look like this:

PAYROLL/A

♦ ♦ ♦ ♦ ♦ ♦ ♦ Atf,ins, W,R,
BaRer, J,B, ♦ ♦ ♦ ♦ + ♦ ♦ ♦

Cha111bers, C,P,
Dodson, M,W,
Ki cf, a111 on , T, Y,

♦ ♦ ♦ + ♦

+ t ♦ ♦ ♦ ♦ ♦

♦ ♦ ♦ ♦ ♦

Le1,1is, G,E,
Miller, L,O,
Peterson, B,
Rodrisuez, F,

+ ♦ ♦ ♦ ♦ + ♦ +

♦ ♦ ♦ + + t ♦

+ ♦ + ♦ ♦ ♦ ♦

t ♦ ♦ + + t

Le1,1is, G,E,
Miller, L,O,
Peterson, B,
Rodrisuez, F,

♦ ♦ + ♦ ♦ ♦ ♦ ♦

t ♦ + + ♦ ♦ +

♦ ♦ t ♦ ♦ ♦ ♦

♦ ♦ + ♦ ♦ ♦

PAYROLL/B will be unaffected. To see the APPENoed file, type LIST PAYROLL/A
(ASCII).

Note: Do not load a program under BASIC after an APPEND.

ATTRIB
Change a File's Password

· .. 11,g:7 :,aa~:1~:!1,~;o!Ji.ttJ, update word. ll ~mitte~i. · .
. ili·UAdl:a~ue~Llt,!,!PD =' is use~, the update,wn.Nt:
4)8,lkt.

27

TRS-80 MODEL Ill DISK SYSTEM

«11:.1:. tUlf, rettame, read, execute, and
total'. aictess, Le., the least-protecte.d)~

HA.ME Rename,.read', execute, and write.
wRne a.ead, execute, and write.
READ Read and execute.
ex&c Execute only.

Note: Eacb fevef anows access to itself plus all lower levets.

A TTRIB lets you change the passwords to an existing file or makes the file
invisible or non-invisible. Passwords are initially assigned when the file is
created. At that time, the update and access words are set to the same value
(either the password you specified or a blank password).

Examples

ATTRIB DATAFILE (I ,ACC=JULY14,UPD=MOUSE,PROT=READl

Makes the file invisible, sets the access password to JULYI4 and the update
password to MOUSE. Use of the access word will allow only reading and
executing the file.

ATTRIB PAYROLL/BAS.SECRET (N,ACC= ,l

Sets the access word to blanks. The file is made non-invisible and the protection
level assigned to the update word is left unchanged.

ATTRIB OLD/DAT,APPLES (UPD=,l

Sets the update word to blanks.

ATTRIB PAYROLL/BAS,PW (PROT=EXEC)

Leaves the access and update words unchanged, but changes the level of access.

Sample Uses
Suppose you have a data file, PAYROLL, and you want an employee to use the
file in preparing paychecks. You want the employee to be able to read the file
but not to change it. Then use a command like:

28

ATTRIB PAYROLL II ,ACC=PAYDAY,UPD=AVOCADO,PROT=READI

Now tell the clerk to use the password PAYDAY (which allows read only); while
only you know the password, AVOCADO, which grants total access to the file.

Protecting BASIC Programs

You may give a BASIC program execute-only protection using the ATTRIB

command. For example, suppose the program is named TEST (no password).
Under TRSDOS READY, execute this command:

ATTRIB TEST IACC=,UPD=VALLEY,PROT=EXECI

Now TEST has a blank access password, an update password of VALLEY, and an
access level of execute only. Without using the update password, there is now
only one way to execute the program:

1. Start BASIC.

2. Type: RUN II TEST 11

(This is the only way to access the program. If the operator attempts to LOAD

it instead, BASIC will erase the program from memory before returning with
READY.)

After the RUN' 'TEST'' command, BASIC will load and execute the program. If
the operator presses (BREAK) or if the program ends normally, BASIC will erase the
program before returning with the READY message. This makes it impossible to
obtain a listing of the program - unless the update password is used.

Of course, if you use the update password, you may gain full access to the
program.

AUTO
Automatic Command after System Start-up

QJ111J,miind~line gives :rRSDOS a command or the name,
program file created by BUILD.

if commamf;i,,;ie ts given, the command will be
. powe~.-up.

1fcbmmani11dHs ofuiUed, the previous AUTO comman .. ·
from the diskette.

29

TRS-80 MODEL Ill DISK SYSTEM

This command lets you provide a command to be executed whenever TRSDOS is
started (power-up or reset). You can use it to get a desired program running
without any operator action required, except for typing in the date and time.

When you enter an AUTO command, TRSDOS writes command-line into its start
up procedure. TRSDOS does not check for valid commands; if the command line
contains an error, it will be detected the next time the System is started up.

Examples

AUTO DIR (SYS)

Tells TRSDOS to execute the command DIR (SYS) after the start-up procedure.
Each time the System is reset or powered up, it will automatically execute that
command after you enter the date and time.

AUTO BASIC

Tells TRSDOS to load and execute BASIC each time the System is started up.

AUTO FORMS IWIDTH=80l

Tells TRSDOS to reset the printer width parameter each time the System is started
up.

AUTO PAYROLL/CMD

Tells TRSDOS to load and execute PA YROLUCMD (must be a machine-language
program) after each System start-up.

AUTO DO STARTER

Tells TRSDOS to take automatic key-ins from the file named STARTER after each
System start-up. See BUILD and oo.

To Erase an AUTO Command

Type: AUTO (ENTER)

This tells TRSDOS to erase any automatic command. The command will be
deleted the next time you power-up or RESET the System.

The acknowledgement: AUTO = 11 11 is displayed after an erasure.

To Override an AUTO Command

You can bypass any automatic command by holding down (ENTER) while pressing
RESET. You must continue holding down (ENTER) until you are prompted for the
date during the initialization process.

30

BUILD
Create an Automatic Command Input File

This command lets you create an automatic command input file which can be
executed via the DO command. The file must contain data that would normally
be typed in from the keyboard to the TRSDOS READY mode.

BUILD files are intended for passing command lines to TRSDOS just as if they'd
been typed in at the TRSDOS READY level. Note: CLEAR cannot be used in a DO
file.

When you enter the BUILD command, BUILD creates the file and immediately
prompts you to begin inserting lines. Each time you complete a line, press
(ENTER). (While typing in a line, you can use the usual cursor control keys for
erasures and corrections.)

To end the BUILD file, simply press (BREAK) at the beginning of a line.

First type: BU I LD filename

You will then be prompted to type in the command text. You then type in up to
63 characters, then press (ENTER). You may enter as many lines as necessary.
Press (BREAK) to quit and return to TRSDOS READY.

A Sample BUILD-File

Here's a hypothetical BUILD-file that initializes the serial interface and the printer
driver:

SETCOM IBAUD=1200,WAITl

FORMS IWIQTH=80)

PAUSE SERIAL INTERFACE & PRINTER INITIALIZED

31

TRS-80 MODEL Ill DISK SYSTEM

CLEAR
Clear User Memory

·st~T0~'ijj.fa:f~;tft.,H~~-0j'yj[ereto start clearing user memory.
. is'f·ttur~.digltijexMecimaf flllmber from 6000 to the end

me:mory.:tf1ftisoptionis omitted, 6000 is used. If thi.s nr·111n11,;~

USed'r ENO·= bbl)b m11.st also be used. .
1'1/, ,,:,,,,

eNo = bbbb tells TRsoos to clear user memory to a specified end. bbbb
is a four-digit hexadecimal number no less than the START

number and no greater than the top of memory. If this option is
used, START= aaaa must also be used.

MEM = cccc sets the memory protect address. cccc is a four-digit
hexadecimal number from 0000 to FFFF. ff this option is omitted,
the memory protect address is reset to end of user RAM.

If all options are omitted, au available RAM is cleared, memory
protect is reset to end of memory, the Display is cleared, all 110

drivers are reset (see Memory Requirements of rnsoos).

This command gets you off to a fresh start.

Depending on the options you select, this command will:

• Zero user memory (load binary zero into each memory address above 6000)

• Clear the Display

• Un-protect all memory

See Memory Requirements of TRSDOS for more information on the memory
protect address. Note: CLEAR cannot be used in a DO file.

Example
CLEAR (START=8000,END=0A000)

Note: Hexadecimal numbers which begin with a letter must be prefaced by zero
(see above example).

CLEAR (MEM=7000)

32

CLOCK
Turn On Clock Display

This command controls the real-time clock display in the upper right corner of
the Video Display. When it is on, the 24-hour time will be displayed and
updated once each second, regardless of what program is executing.

Clock display is OFF at TRSDOS start-up.

Note: Except during cassette and disk 110, the real-time clock is always running,
regardless of whether the clock display is on.

Examples
CLOCK

Turns on the clock display.

CLOCK (OFF)

Turns the clock display off.

See TIME and DATE.

CLS
Clear the Screen

This command clears the Display and puts it in the 64 character/line mode.

Example

CLS

33

TRS-80 MODEL Ill DISK SYSTEM

COPY
Copy a File or Files

fl.ttisa,1iw,f:d~card'.'0''fiJe<spetiflcatfon in which the file 11a;e is
amide~ and'Jhe extension is given. rnsoos will copy all flies
wbieh\have a matching extension, regardless of the me name:

:dis daftnediibove.

This command copies source-file into the new file defined by destination-file.
This allows you to copy a file from one disk to another, using a single drive if
necessary. (In the latter case, you must include drive specifications in both file
specifications.) For single-drive systems (Drive 0), both diskettes must contain
TRsoos. (i.e., Data diskettes aren't allowed in Drive 0.)

Examples

COPY OLDFILE/BAS NEWFILE/BAS

Copies OLDFILE/BAS into a new file named NEWFILE/BAS. TRSDOS will search
through all drives for OLDFILE/BAS, and will copy it onto the first disk which is
not write-protected.

COPY NAMEFILE/TXT :1

This command specifies a file named NAMEFILEITXT to another disk.

COPY FILE/EXT:0 :1

This command copies FILE/EXT from Drive 0 to Drive 1.

34

COPY /BAS:0 :1

tells TRSDOS to copy all Drive O files which have the extension /BAS. The files
will be copied onto Drive I, using their present file names and extensions.

Sample Use

Whenever a file is updated, use COPY to make a backup file on another disk. You
can also use COPY to restructure a file for faster access. Be sure the destination
disk is already less segmented than the source disk; otherwise the new file could
be more segmented than the old one. (See FREE for information on file
segmentation.)

To rename a file on the same disk, use RENAME, not COPY.

CREATE
Create a Pre-allocated File

This command lets you create a file and pre-allocate (set aside) space for its
future contents. This is different from the default (normal) TRsoos procedure in
which space is allocated to a file dynamically, i.e., as necessary when data is
written into the file.

If you open the file for sequential writes, TRSDos will de-allocate (recover) any
unused granules when the file is closed. If you open the file for random access,
TRSDos will not de-allocate space when the file is closed.

35

TRS-80 MODEL Ill DISK SYSTEM

You may want to use CREATE to prepare a file which will contain a known
amount of data. This will usually speed up file write operations. File reading
will also be faster, since pre-allocated files are less segmented or dispersed on
the disk - requiring less motion of the read/write mechanism to locate the
records.

Examples
CREATE DATAFILE/BAS (REC=3001 LRL=0)

Creates a file named DATAFILE/RAS, and allocates space for 300 256-byte
records.

CREATE NAMES/TXT,IRIS (LRL=G41REC=50l

Creates a file named NAMESITXT protected by the password IRIS. The file will be
large enough to contain 50 records, each 1i4 bytes long.

CREATE PAYROLL/BAS

Creates a file named PAYROLL/BAS but allocates no space to it.

Sample Use
Suppose you are going to store personnel information on no more than 250
employees, and each data record will look like this:

Name (Up to 25 letters)
Social Security Number (11 characters)
Job Description (Up to 92 characters)

Then your records would need to be 25 + 11 + 92 = 128 bytes long.

You could create an appropriate file with this command:

CREATE PERSONNL/TXT (REC=250,LRL=128l

Once created, this pre-allocated file would allow faster writing than would a
dynamically allocated file, since TRSoos would not have to stop writing
periodically to allocate more space (unless you exceed the pre-allocated
amount).

DATE
Reset or Get Today's Date

36

Each must be a two-di!Jit decimal number between the following
ranges:
mm 01-12
dd 00-31
yy 00-99

The specifications are an option; however, if one specification is
used, they all must be used.

If mm!dd!yy is omitted, rnsoos displays the current date.

If mm!dd!yy is given, rnsoos resets the date.

This command lets you reset the date or display the date.

You initially set the date when TRSDOS is started up. After that, TRSDOS updates
the date automatically, using its built-in calendar. You can enter any two-digit
year after 1900.

When you request the date, TRSDOS displays it in the format: 07 / 25 / 80 for July
25, 1980.

Examples

DATE

Displays the current date.

DATE 07/18/80

Resets the date to July 18, 1980.

DEBUG
Start Debug Monitor

Df8U&

This command starts the debug monitor, which allows you to enter, test, and
debug machine-language programs.

37

TRS-80 MODEL Ill DISK SYSTEM

Its features include:

• Full- or half-screen displays of memory contents

• Commands for modifications to RAM and register contents

• Single-step execution of programs

• Breakpoint interruption of program execution

• Transfer of control (Jump)

• "Editing" of disk-files

DEBUG uses the memory area from X'4E00' to X'54FF' (see TRSDOS Memory
Map). DEBUG can only be used on programs in the user area X'ssoo' to TOP.

Examples

DEBUG

Tums DEBUG ON. Press (ID to quit debugging and return to TRSDOS.

Q

Turns DEBUG OFF.

Command Description

Debug commands are usually entered by pressing a single key. In most cases,
you do not have to press (ENTER) after the command has been typed in. Either
a prompt will immediately be displayed or DEBUG will execute the operation
without further instruction.

In some cases, you will have to enter a specific hexadecimal value or address
(see Rand J commands, for instance). Instead of pressing (ENTER) after the
address is typed in, you will have to press (SPACE BAR).

Once you have entered the DEBUG program, you may use any of the following
special commands:

D (Display Memory Contents)

Press ([) to display the contents of memory. TRSDOS will respond with the
prompt: D ADDRESS = You should type in the hexadecimal address of the
memory location you wish to see.

The display will be either half- or full-screen, depending on the format you are
currently using (see below).

38

X (Half-Screen Display)

Press 00 to put the Display in the half-screen format. A 128-byte block of
memory will be displayed starting with the next lowest address which is a factor
of 16.

Figure 9 shows a typical half-screen format.

S (Full-Screen Display)

Press (SJ to display the contents of a 256-byte block of memory starting with the
next lowest address which is a factor of 256.

Note: The last 16 bytes on the Display will be overlaid by any command line
typed in after the full-screen display is updated.

M (Modify RAM)

Press 00 to change to the disk utility display format (see the f command).
TRSDOS will respond with the prompt: M ADDRESS = You should type in the
four-digit hexadecimal address of the memory location you wish to modify,
followed by a blank space (anything other than a space will abort the
command).

The display will change to the memory edit format. The cursor will appear as a
blinking character at the specified location.

To exit the modify mode, press (ENTER) to keep all changes made.

R (Change Register Contents)

Type:

I (Instruction Single-Step)

Pressing CD will allow the Computer to execute a single Z-80 instruction. The
display will then be updated.

39

TRS-80 MODEL Ill DISK SYSTEM

Start address
of one 16-byte
"row" of RAM

Figure 9. Half-Screen Format.

Z-80 register contents
Op-code Instructions at the "PC" address

The instruction in the memory contents referenced by the program counter is
executed. The program counter is increased by the appropriate value, and the
control is returned to DEBUG.

DEBUG will not, however, step through a call or jump into a ROM address.

C (Call Single-Step)

If you wish to complete an entire call/return sequence. press ©. The call is
then executed and control is returned to DEBUG when the subroutine returns.
Otherwise, this instruction acts just like the I command.

You will not be able to step through a call or jump into a ROM address.

U (Update)

Pressing (ID causes the Display to be updated repeatedly. Press any key to exit
from this mode.

40

ASCII display
(• indicates a

nondisplayable
character)

; (Increment Display Address)

If the Display is half-screen, the first location shown is incremented by 16 when
you press GJ If the full-screen format is displayed, the starting address will be
incremented by 256.

- (Decrement Display Address)

If the Display is half-screen, the first location is decremented by 16 when you
press (=-J. If the full-screen format is displayed, the starting address will be
decremented by 256.

J (Jump)

Press QJ to transfer control to a machine-language program, setting optional
breakpoints.

Debug will respond with the prompt: J ADDRESS? =

You may type in a jump address and a breakpoint address. The command is
terminated when you press (ENTER). Type in the addresses in one of three
formats:

· ;aaij~ 1ilft:ur;.digi(hexadecimal address specifying the Jmnpi . ·
de$.tination. H omitted, the address in the Pc r.e1ister is used,

llllt,bisafour•digit hexadecimal address specifying a br~kP'ltint.
· · lefo:reitbe Computer executes an instruction af this address, it·

wUI return contralto DEBUG. If this address is omitted, control
wiH notreturn to DEBUG.

Notes: Breakpoints must be set at the beginning of z-so instructions. You may
not set breakpoints in ROM addresses. The breakpointed address will contain an
X'F7' until the breakpoint is encountered. Then the original contents will be
restored and DEBUG will take control again.

Q (Quit)

Pressing([) turns off DEBUG and returns control to TRSDOS.

41

TRS-80 MODEL Ill DISK SYSTEM

F (File Patch Utility)
This command lets you load and modify the contents of a diskette file.

When you press CD, DEBUG will respond with the prompt: FI LES PEC?. Enter the
name of the file to be patched.

DEBUG will set up a full-screen display showing the first 256 bytes in the file.
You can "page" through the file using the CJ and B keys.

Figure 10 gives a typical display.

In this file-display mode, both hexadecimal and ASCII are given for each byte. If
a code has no displayable character, a period is shown in the ASCII area.

The display control commands are like those for the normal file-display mode:

CJ Next page

~J Previous page

To change the file contents, press 00. This puts you in a modify-memory mode
like the one previously described. Use the arrow keys to position the cursor (a
blinking character), then type in the correct contents as a hexadecimal value.
When you are through changing a page on the display, press (ENTER). The
diskette file will be updated and you will be returned to the file-display mode.

To cancel changes made, do not press (ENTER), press (BREAK). This will put you
back in the file-display mode without updating the diskette file. You may press
CJ then ~J to restore the page display to its actual contents.

To quit patching a file, press (BREAK) while in the file display mode. DEBUG will
prompt you for a new file specification. Press (BREAK) again and you will be
returned to TRSDOS READY.

42

Drive# Record#
Byte Offset
within Record

Hexadecimal Contents of
Each Byte

t r,..----~----,

Figure 10. Full-Screen Format

ASCII Translation

43

TRS-80 MODEL Ill DISK SYSTEM

DIR
List the Diskette Directory

OJR .::tJ tmv,Y,PRT}

~I/is Ule desEre<Urlve directory. lf omitted, Drive O is assumed;

tNV lrsts fhe inlJ/isi:bfe user Ufes. ff omitted, non-invisfble user tiles.a:re
fisted.

svs lists system and user files. If omitted, only non-invisible user Hf.es are
Hsted.

PRT l.sts tile directory to the Printer. H omitted, the directory will be listed
on the Video Display only.

If no option is. given, TRsoos lists non-invisible user files in Drive O.

This command gives you information about a disk and the files it contains.

To pause the listing. press @iJ. To continue. press (ENTER). To terminate the
1 is ting. press (BREAK).

Examples

DIR

Displays the directory of non-invisible user files in Drive 0.

DIR :1 (PRTl

Lists the directory of the user files in Drive I to the Printer.

Sample Directory Listing

(See Figure 11.)
Definition of column headings

'.D F tie Name- The name and extension assigned to a tile when it was created.
The password (if any) is not shown.

@ Attributes-A four-character field.

44

The first character is either I (Invisible) or N (Non-invisible).

The second character is s (System) or* (User) file.

The third character gives the password prntection status:

Figure 11. Directory Listing.

x The file is unprotected (no password).

A The file has an access word but no update word.

u The file has an update word but no access word.

B The file has both update and access words.

The fourth character specifies the level of access assigned to the access word:

0 Total access

I Kill file and everything listed below.

2 Rename file and everything listed below.

3 This designation is not used.

4 Write and everything listed below.

5 Read and everything listed below.

6 Execute only.

7 No access.

@ Number of Free Granules - How many free granules remain on the diskette.

@ Logical Record Length - Assigned when the file was created.

® Number of Records-How many logical records have been written.

® Number of Granules- How many granules have been used in that
particular file.

45

TRS-80 MODEL Ill DISK SYSTEM

(J) Number of Extents- How many segments (contiguous blocks of up to 32
granules) of disk space are allocated to the file.

® End of File (EOF)-Shows the last byte number of the file.

® Creation Date- When the file was created.

DO
Begin Auto Command Input from a BUILD-File

This command reads and executes the lines stored in a special-format file
created with the BUILD command. The System executes the commands just as if
they had been typed in from the Keyboard.

Command lines in a BUILD file may include library commands or file
specifications for user programs.

When DO reaches the end of the automatic command input file, it returns control
to TRSDOS.

The DEBUG and CLEAR command cannot be included in a BUILD file.

In addition to executing TRSDOS library commands, you can load and execute
user programs from a Do-file. You will probably want to make your program
name be the last line in the Do-file.

Examples

DO STARTER

TRSDOS will begin automatic command input from STARTER, after the operator
answers the Date and Time prompts.

AUTO DO STARTER

Whenever you start TRSDOS, it will begin automatic command input
from STARTER.

46

Sample Uses

Suppose you want to set up the following TRSDOS functions automatically
on start-up:

FORMS (WIDTH= 80)

CLOCK (ON)

Then use BUILD to create such a file. If you called it BEGIN, then use the
command: AUTO DO BEGIN to perform the commands each time TRSDOS

starts up.

DUAL
Duplicate Output to Video and Printer

This command duplicates all video output to the Printer, and vice versa. It takes
effect immediately.

Notes:

1. Video and printer output may be different because of intrinsic differences
between output devices and output software.

2. Using the DUAL command will slow down the video output process.

3. The DUAL command cannot be used during ROUTE and vice vtrsa.

4. The printer should be ready when you execute the command.

Sample Use

For a printed copy of all system/operator dialog, type: DUAL (ENTER)

To turn off the DUAL process, type: DUAL (OFF) (ENTER)

47

TRS-80 MODEL Ill DISK SYSTEM

DUMP
Store a Program Into a Disk File

DUMP fi/e(START = aaaa,END = bbbb, TRA = cccc, RELO = dddd)

file is the file speci(ic~tion

START= aaaa is the start address of memory block. aaaa must be a four
digit hexadecimal number greater than or equal to X'7ooo:

END= bbbb is the end address of the memory block. bbbb must be a four
digit hexadecimal number.

TRA = cccc is the transfer address where execution starts when the program
is loaded. cccc must be a four-digit hexadecimal numb1ir. If this
option is omitted, the command will default to rnsoos re-entry.

RELO = dddd is the start address for relocating or loading the program back
into memory. dddd must be a four-digit hexadecimal number. If this
option is omitted, no relocation will take place.

Note: Addre:sses must be hexadecimal form, without the x· ' notation.
You mustaddthe pcellx ''O" to any hex number which beglnswltf1 a
retter:

This command copies a machine-language program from memory into a
program file. You can then load and execute the program at any time by entering
the file name in the TRsoos READY mode.

Examples

DUMP LISTER (START=70001END=71001TRA=7004)

Creates a program file named LISTERICMD containing the program in memory
locations x·7000· to x·71ocr. When loaded, LISTER/CMD will occupy the same
addresses. and TRsoos will protect memory beginning at x·7000·. The program is
executable for the TRSDOS READY mode.

DUMP PROG2 (START=70001END=7F001TRA=80101RELO=8000)

Creates a program file named PROG2/CMD containing the program in addresses
x·7000· to X'7Foo·. When loaded, PROG21cMD will reside from x·8ooo· to X'8Foo·.

Execution will start at x·8010·.

48

ERROR
Display Error Message

:ERROR number

number is a decimal number for a TRsoos error code.

This command displays a descriptive error message. For example, after
receiving the message, * * ERROR 47 * * you may respond with the
command: ERROR 47 (ENTER) and TRSDOS will display the full error message.

For a complete list of error codes and messages, see the Technical Information
section of this manual.

FORMS
Set Printer Parameters

FORMS (W10TH == W, UNES = f}

WIDTH= w ~s the maximum number of characters per outpul line. •ta line
reaches this length, TRsoos will insert a carriage return to lorce a new
tine. lf this option is omitted, the current maximum width wm be
used. To disable the maximum line width feature, use WIDTH=255.
TRsoos will not force new lines.

LINES= I is tha number of lines per page. rRsoos does not use this value.
However, BASIC will use it in computing the necessary page
displacement for execution or if LPRINT CHR$(12) is executed. If LINES=/

is omitted, the current value is used.

This command lets you modify the printer forms control features of TRsoos.

The default values are:

Maximum line width: 132

Lines/page: 60

FORMS also sets the line count to 0.

49

TRS-80 MODEL Ill DISK SYSTEM

Examples

If you are using 8½"-wide forms, you will probably want to set WIDTH=80:
FORMS (WIDTH=812l)

If you are using 14" -long forms, you may want to set LINES = 78.

FORMS (LINES= 78)

This change will allow the BASIC statement, LPRINT CHR$(12), to advance a page
by the correct number of lines.

Notes:

1. The WIDTH you specify is stored in RAM location 16427. The LINES you
specify is stored in RAM location 16424.

2. The Printer must be ready when you execute this command.

FREE
Display Disk Allocation Map

This command gives you a map of granule allocation on a diskette. (A granule,
1280 bytes, is the unit of space allocation.) It also shows the location of the
directory and any flawed sectors.

When a diskette has been used extensively (file updates, files killed, extended,
etc.), files often become segmented (dispersed or fragmented). This slows the
access time, since the disk read/write mechanism must move back and forth
across the diskette to read and write to a file.

FREE helps you determine just how segmented your disk files are. If you decide
you'd like to re-organize a particular file to allow faster access, you can then
COPY it onto a relatively "clean" diskette.

50

Examples
FREE

Displays a free space map of the diskette in Drive 0.

FREE (PRT)

Lists the free space for Drive O to the Printer.

FREE : 1 (PRTl

Lists the Drive 1 map to the Printer.

A Typical FREE Display
Four special symbols are used in the FREE map.

• Unused Granule
Direct Directory Information
X Allocated Granule
Flawed Granule Contains a Flawed Sector (Unusable)

A typical free map display is shown in Figure 12.

Disk Name

Figure 12. Free Map.

HELP
Explanation of TRSDOS Command

· He~r 1J«m111a11ll

The directory is located
on track 17.

t:111JJ11ta11.d is the specific TRsoos command or subject on which you ne.ed
help. If omitted or if an invalid subject is given, TRSoos will Jist all
avaifabte subjects.

51

TRS-80 MODEL Ill DISK SYSTEM

Example

If you type in the following: HELP BACrnP ([NffBJ TRSDOS will respond with
the syntax format. a definition of the command. and an explanation of
the abbreviation.

HELP SYNTA>'. tells TRSDOS to explain the Hll.1' descriptions.

KILL
Delete a File or Group of Files

Two syntaxes:

A) KILL file
file is a file specification

B) KILL /ext:d
I ext is a file extension that must contain three characters.
:dis a drive specification. It must be provided.

This command deletes one file or a group of files. depending on which form is
used. Form A deletes the specified file. If no drive specification is given.
rnsoos deletes the file from the first diskette that contains it.

Form B deletes all files with a specified extension. regardless of the file name of
each file. If no drive specification is given. the files will be deleted from the first
drive that contains a matching file specification.

Examples

KILL TESTPROG/BAS

Deletes the named file from the first drive that contains it.

KILL JOBFILE/IDY,PASSWORD:1

Deletes the named file from Drive I. The tile has a password of PASSWORD.

KILL /BAS:0

Deletes from Drive O all files having the extension BAS.

52

,,,,- •.

LIB
Display Library Commands

LIB

This command lists to the Display all the library commands. For help with a
command, use HELP.

Example

LIB

LIST
List Contents of a File

UST file (PRT ,SLOW ,AStll)

file is the tile specification.

PRT tells.tRsoos to list to the Printer. If omitted, only the Video Display is
us,d.

SLOW tells TRSOOs to pause briefly after each record. If omitted, the listing is
contin.uous.

ASCH tells TRsoos to list the file in Asc11 format. If omitted, hexadecimal
format is used.

This routine lists the contents of a file. The listing shows both the hexadecimal
contents and the ASCII characters corresponding to each value. For values
outside the range (X'20', X'7F'J, a period is displayed.

Use the ASCII option for text files and BASIC programs saved with the A option.

Note: Only ASCII codes x·oo·-x•7f' are sent to the Printer. Bit 7 is always
set to 0.

During the listing, press CID to pause, (ENTER) to continue, or (BREAK) to exit.

53

TRS-80 MODEL Ill DISK SYSTEM

Examples

LIST DATA/TXT (ASCIIl

Lists the contents of DATA rxr in ASCII format.

LIST FILE/A (SLOW)

Lists the contents of FILEA. pausing after each record.

LIST PROGRAM/CM □ (PRTl

Lists the file PROC,RA\1 CMD to the Printer.

LOAD
Load a Program File

LOAD file

file is a fi.le spetificaUo.n for a file created by the DUMP comm,n,d. 1
,::,/< '·w :j:~3; ,

This command loads a machine-language program file into memory. After the
file is loaded. TRSDOS returns to the TRSDOS READY mode.

You cannot use this command to load a BASIC program or any file created by
BASIC. See the BASIC Reference Manual for instructions on loading BASIC

programs.

Note: The file must load into the user area (X'700(l'-TOPJ.

Examples

LOAD PAYROLL/ PT 1

Sample Use

Often several program modules must be loaded into memory for use by a master
program. For example. suppose PAYROLL1PT1 and PAYROLL!PT2 are modules. and
\1ENU is the master program. Then you could use the commands:

LOAD PAYROLL/ PT 1

LOAD PAYROLL/PT2

to get modules into memory. and then type: MENU to load and execute \1ENU.

54

MASTER
Set Master Read/Write Drive

• M•tiR {ORtllE::;: a)

a is the drive specification. If omitted Drive O is set as the master drive.

This command allows you to assign a specified drive as the Master Read or
Write drive in the system. When searching for a file, TRsoos will start with the
master drive.

If the file is not found on the specified drive, TRsoos will continue searching on
the next higher-numbered drive.

Example

After you enter the command: MASTER (DR It.JE = 1) Drive I becomes the
master drive.

PATCH
Change the Contents of a Disk File

=cc)

ADD=:= aaaa specifies the address at which the data is found. aaaa is a four
digit hexadecimal number.

FIND=:ll#~pectfiesthe string you wish to find (or compare to}. bb is a
he~adecimal sequence.

i'.:HG ::.:cctpecfltes the new contents for the byte(s). cc is a hexadecimal
t~que11ce.

Note: this utility is for machine language programs only.

55

TRS-80 MODEL Ill DISK SYSTEM

This command lets you make minor corrections in any disk file, provided that:

I. You know the existing contents and location of the data you want to change.

2. You want to replace one string of code or data with another string of the
same length.

You can use PATCH to make minor changes to your own machine-language
programs; you won't have to change the source code, re-assemble it, and re
create the file.

Another application for PATCH is to allow you to implement any modifications to
TRSDOS that may be supplied by Radio Shack. That way, you do not have to
wait for a later release of the operating system.

Sample Use
Suppose you want to change seven bytes in a machine-language program file.
First determine where the seven-byte sequence resides in RAM when the program
is loaded. Then make sure your replacement string is the same length as that
of the original string. For example, you might write down the information
as follows:

File to be changed: VREAD

Start address: x·s2so·

Sequence of code to be changed: x·co2025EY

Replacement code: x·ooooooo9·

Then you could use the following command:

PATCH VREAD IADD=5280,FIND=0CD2D25E5,CHG=00000008l

PAUSE
Pause Execution for Operator Action

56

PAUSE msssage

message is the message to be displayed during the pause execution.
is optional. If omitted, PAUSE will be displayed by itself.

This command is intended for use inside a DO file so TRSDOS can print a message
or reminder.

To continue after the pause, TRSDOS prompts you with the message:

PRESS <ENTER> TO CONTINUE

Example

PAUSE INSERT DISKETTE #21

TRSDOS displays PAUSE, next the message and then prompts you to press (ENTER)
to continue execution.

PAUSE
PRESS {ENTER> TO CONTINUE

TRSDOS displays PAUSE and then next prompts you to press (ENTER) to continue.
See BUILD and DO for sample uses.

PROT
Use or Change a Diskette's Master Password

PROT :d (PW,lQCK)

:dis an optional drive specification. If omitted, Drive O is used.

PW tells rnsoos you want to change the master password.

LOCK tells TRsoos to assign the master password to all unprotected user
files. H omitted, the unprotected files remain unprotected.

PROT lets you use the master password to protect all unprotected files at once, or
to change the master password.

The master password will be needed to BACKUP the diskette, so be sure to
remember it!

Note: The master password on the TRSDOS factory-release diskette is PASSWORD.

57

Examples

PROT :0 (PW)

TRS-80 MODEL Ill DISK SYSTEM

Tells TRSDOS to change the master password on the Drive O diskette. TRSDOS will
prompt you first for the old master password. then for the new master password.

PROT : 1 (LOCK)

Tells TRSDOS to assign the master password to all unprotected user tiles. TRSDOS

will first prompt you for the master password.

PURGE
Delete Files

PURGE :d (file-type)

:dis the drive which contains the disk to be purged.

file-type must be one of the following:

svs All System and User files (no Invisible)
1ttv All Invisible and User files (No System)
ALL AU files on disk (User, System, Invisible)

n li/e .. rvJJ:,,1tJ>ij)itiijijtf~s:0qs qefatilts to User files.
,,, ',, ,,, ,; '':"'"

This command allows quick deletion of files from a particular diskette. To use
PURGE, you must know the diskette 's master password. (TRSDOS System
diskettes are supplied with the password PASSWORD)

When the command is entered, TRSDOS will ask for the diskette 's password.
Type in up to eight characters. Press (ENTER) if you typed fewer than eight
characters. The System will then display user filenames one at a time,
prompting you to KILL or leave each file.

Example

PURGE : 1

TRSDOS will purge user files from Drive I. This would include BASIC programs.

PURGE :1 (INI.J)

TRSDOS will purge all invisible files in Drive I.

58

-
Note: System diskettes contain some files which are not shown in any of the
directory listings. You may delete these files with a special form of PURGE:

The asterisk tells TRSoos to ask you if you want to delete the System files. If
you do delete them, the diskette becomes a data diskette and may only be used
in Drive 1, 2 or 3.

The other parts of this command are as explained previously. However, be sure
to do the PURGE using Drive 1, 2 or 3, since the diskette will become "non
system" during the PURGE.

RELO
Change Where Program Loads into Memory

This command allows you to change the address at which the program loads into
memory. It does not change the program itself.

Note: This command may be useful in conjunction with DUMP.

Example

RELO PROGRAM/CM □ (ADD=G578l

TRsoos will load the program PROGRAM/CMD at the new memory address
of 6578.

59

TRS-80 MODEL Ill DISK SYSTEM

RENAME
Rename a File

11i,vq,amt1is the newtite name .

. The file name niay Include a drive specification and or passworf.

t6e new fH, naffll' should not include a drive specification !)r password~

This command lets you rename a file or program. Only the name/extension
is changed; the data in the file and its physical location on the diskette
are unaffected.

RENAME cannot be used to change a file's password protection. Use ATTRIB

to do that.

RENAME also checks to see that the intended new name does not duplicate a
filename currently on the same diskette. If it does, the command is cancelled
and an error message is displayed.

Examples

RENAME MATHPAK MATHPAK/BAS

Tells TRSDOS to add the extension to the filename.

RENAME ABCDE/DAT ABCDEF/DAT

Tells TRSDOS to change the filename only.

RENAME PAYROLL1/TXT,GSR PAYROLL2/TXT

Tells TRSDOS to change the filename; the password is retained automatically.

RENAME FILE1:3 FILE2

Tells TRSDOS to change the filename of the file on Drive 3.

60

ROUTE
Routing 1/0 Devices

ROUTE (SOUR&~~ a;j,neSTIN :::; bb)

SOURCE ::.all specifies the. s.ource 110 device.

DESTIN= bb$pecifies the destination 110 device.

aa and bb may be any meaningful combination of the.foUowing.two"'.letter
abbreviations; ·

DO (DisplayJ
PR (Printer)

KB (Keyboard)

RI (RS-232 Input)

RO (RS-232 Output)

If the SOURCE and DESTINATION options are omitted, TRSOOS resets 1/0 Drivers
lo their original 1/0 routes. The SOURCE and DESTINATION devices must both be
output or both be input.

This command allows you to route 110 devices automatically. For example,
TRSDOS can route information from the Printer (PR) to the Display (DO).

Note: ROUTE cannot be used in conjunction with the DUAL command.

Examples

ROUTE (SOURCE=PR,DESTIN=DO)

TRSDOS will route your Printer output to the Display.

ROUTE

110 drivers are returned to their original state.

For further details on routing vo see "Routing Input/Output" in the
Model III Manual.

61

TRS-80 MODEL Ill DISK SYSTEM

SETCOM
Set Up RS-232-C Communications

This command initializes RS-232-C communications via the serial channel. Before
executing it, you should connect the communications device to the Model III.

See the Model III Operation Manual for a description of RS-232-C signals used.

See Using the RS-232-C Interface in the Model III Manual for further details.

Examples
SETCOM (WORD=7 ,BAUD=300 ,STOP=1 ,PARITY=3 ,WAIT)

This would set the RS-232-C to seven bit words, 300 baud, one stop bit, no parity,
and place it in the WAIT mode.

SETCOM

The command without specifications will display the current settings.

The following program will allow you to use your Computer as a terminal. For
further information, refer to the Operation section of your Model III Operation
Manual.

Note: This program executes at 300 Baud.

62

5 DEFINT A-Z 'INTEGER VARIABLE FOR SPEED
10 POKE 16880, 0 'DON'T WAIT FOR SERIAL I/O
15 POKE 16888, (5*16)+5 'T){/RCl,J AT BAUD RATE 300
20 DEFUSRO = &HOO5A: REM SET UP CALL TO SRSINIT
40){ = USR0 (0)
60 DEFUSRI = &H0050
65 DEFUSR2 = &H0055
70 CI = 16872 'CHARACTER INPUT BUFFER
80 CO= 16880 'CHARACTER OUTPUT BUFFER
80 'CHECK FOR SERIAL INPUT
110)-(= USR1(0) 'CALL SRSRCl,J
120 CS= CHRS(PEEK(CI)) 'LOOK AT INPUT BUFFER
130 PRINT CS 'IF C = 0, NOTHING HAPPENS
140 'CHECK FOR KEYBOARD INPUT
150 CS= INKEYS
160 IF CS = "" THEN 110 'NO KEY, SO GO CHECK SERIAL
165 PRINT CS:
170 POKE CO, ASC(CS)
180)-(= USR2(0)
200 GOTO 110

TAPE
Tape/Disk Transfer

'SELF ECHO
'PUT CHARACTER INTO OUTPUT BUFFER
'CALL SRST)<
'GO CHECK SERIAL INPUT

T~E (s d~oi,rcll;t) :!: destination)

sour,:J.and destination are abbreviations for the storage .d~J1ei .Q>
be used:

r Tape
o Disk
R Random access memory

Note: TAPE:can. only be used with machine-language programs; ·1JAs1c ·
programs. l'nUSt;be CLOADed and CSAVEed.

This command transfers z-so machine-language programs from one storage
device to another. The following transfers are possible:

• Tape to disk

63

TRS-80 MODEL Ill DISK SYSTEM

• Disk to tape

• Tape to RAM

Examples
TAPE (S=T,D=D)

Starts a tape-to-disk transfer. TRSDOS will prompt you CASS?. Select the desired
baud rate (H for high, L for low). TRSDOS will then prompt you to press (ENTER)
when the recorder is ready to play to the Computer. When you press CENTER), the
tape will begin loading.

Note: If no asterisks flash, the recorder volume may need adjustment or the
baud rate setting may be incorrect.

TRSDOS will read the file name from the tape and use that name for the disk file.
It will copy the program to the first write-enabled diskette, starting with the
master drive (see MASTER).

TAPE (S=D,D=T)

Starts a disk-to-tape transfer. TRSDOS will prompt you for the desired cassette
baud rate, then for the diskette file specification. Then it will tell you to press
(ENTER) when the cassette recorder is ready to record from the Computer.

TAPE (S=T ,D=R)

Starts a tape-to-RAM transfer. TRSDOS will prompt you for the cassette baud rate,
and will tell you to press (ENTER) when the recorder is ready to play to the
Computer. After loading the program, TRSDOS will begin execution at the
transfer address specified on the tape.

TIME
Reset or Get the Time

64

llb:mm:ss.specjfie$,.ll!,~:l101tr bk, minute.mm, and second ss.
Eaoh·mlll•beiif:.idig1i~;t1Jmal number between the foflowingranijef 1

hit ~(f:23 " ' .

mm •0;5t
ss 0-59

If Mtmm::Ssisgiven. TRSDOS resets theUme .

.fflm:mm:ssis nCJ1.9iYetJ, l'Rsoos displays the current time.

This command lets you reset or display the time.

Time uses a 24-hour clock. For example, 1:00 P.M. is displayed as 13:00.

You initially set the time when TRSDOS is started up. After that, TRsoos updates
the time automatically, using its built-in clock.

When you request the time, TRsoos displays it in this format: 1 ll: 15: 31 for
2: 15:31 P.M.

Examples

TIME

Displays the current time.

TIME 13:212l:12ll2l

Resets the time to 1 :20:00 P.M.

Note: If the clock is allowed to run past 23:59:59, it will re-cycle to zero, the
date will be incremented, and the clock will continue to run.

WP
Write-Protect Via Software

'"'dsp~Jifl,s the disk drtve to be protected. If omitted, a11drl,teswil1 be
unprotected.

Diskettes can be protected from being overwritten by this command. It is a
software write-protect rather than a hardware write-protect (such as the write
protect tab on the diskette).

Only one drive may be protected at a time.

To unprotect a drive, making it accessible to writing, simply enter the command
WP without options or with a different drive number specified. The WP command
will not override a write-protect tab.

65

TRS-80 MODEL Ill DISK SYSTEM

Examples
WP (DRit,JE=l)

TRsoos will write-protect the disk in Drive I.

WP

TRsoos will eliminate write-protection on all drives.

66

. ,,,--.

TRSDOS Utility Commands

BACKUP
Create an Exact Copy of an Original Disk

··.·•·•··t1ve•~9nJaining• tbQ originil;
.mptyou .torthis·infom1~tien,·}

... t~;'tfriveeont.ainingJbe,isk~
SWil(promptfor it. . .

BACKUP copies the contents of the source disk to the destination disk. This gives
you a "safe" copy of the disk. Always keep an extra copy of data or programs
you have stored on your disks.

Note: Both source and destination diskettes must be write-enabled.

TRSDOS will prompt you at each step after you type: BACKUP

If you omitted the source/destination-drive numbers, TRSDOS will begin with the
prompts: SOURCE DR I 1.JE NUMBER.

Type in the number of the drive that contains the source diskette and press
(ENTER).

DESTINATION DRIVE NUMBER?

Type in the number of the drive that will contain the destination diskette and
press (ENTER).

SOURCE DISK MASTER PASSWORD?

Type in the password assigned to your source diskette.

DISK CONTAINS DATA1 USE DISK OR NOT?

Type in Y (Yes) or N (No).

DO YOU WISH TO RE-FORMAT THE DISK?

Type in Y (Yes) or N (No) .

67

TRS-80 MODEL Ill DISK SYSTEM

If you specified the source/destination drives, TRsoos will request the
PASSWORD, skipping the first two steps.

TRsoos will then take charge of formatting and verifying the destination disk as
well as letting you know if there are any errors or flawed tracks.

CONVERT
Model I to Model III File Conversion Utility

CONVERT

Model I formatted diskettes cannot be used in the Model III Disk System.
However, the CONVERT utility can read a Model I diskette and copy its non
system files onto a Model III TRSDOS diskette. This diskette may then be used
normally in the Model III Disk System. The original Model I diskette may still
be used in a Model I Disk System, since it is unchanged by CONVERT.

CONVERT does not convert or change data; it converts the file storage format.
For this reason, Model I Disk BASIC programs may require slight changes before
they will run properly in the Model III Disk System. Model I machine-language
programs may require major or minor changes before they will run in the Model
III Disk System. You may make these changes on the Model I diskette before
using CONVERT, or on the Model III diskette containing the converted files.

For hints on program conversion, see:

• Technical Information in this manual

• Technical Information in the Model III Manual

• The manual, Instructions for Converting Specified Model I Programs for use
on TRS-80 Model ff/.

Drive Usage

In two-drive systems, the files must be copied onto a Model III system diskette
in Drive 0; in three- or four-drive systems, the files may be copied onto a data
diskette in Drive 1, 2 or 3.

During the conversion process, the Model I diskette is referred to as the
"source"; the Model III diskette, the "destination." The source diskette cannot
be in the same drive as that of the destination diskette.

68

Password Protection

CONVERT is designed to preserve the password security of each file that it
transfers. To accomplish this and still allow the copying of protected files,
CONVERT follows different procedures depending on the access and update
passwords on each file.

In the simplest case, a file has blank access and update passwords. The copied
file will be given blank passwords. (If you have a Model I Disk System with
TRSDOS 2. 3, you may use the PROT command to remove all passwords from all
files. This will simplify the CONVERT process. Do this on the Model I system
before you attempt to convert to Model III.)

In another case, the access and passwords are different. If the access password
is blank and the update is not, then TRSDOS will prompt you for the update
password. If you know the update password, type it in. The file will be copied
with access and update passwords set to the old update password. If you don't
know the update password, simply press (ENTER). The file will be copied with the
access password set to blanks and the update password set to an unknown value.

If the access and update passwords are not blank and they are not the same,
TRSDOS will not copy the file, but will print the message, FILE SK I PP ED, and
continue with the next file in the source directory.

Sample Use

Get the Model I diskette ready. If you have a Model I Disk System with TRSDOS

2.3, try to remove all passwords from all your files. This will prevent any
problems with passwords. The password protection may be restored with the
Model III ATTRIB or PROT commands after the conversion is complete.

Using the Model III Disk System, you must always have a Model III TRSDOS

diskette in Drive 0. TRSDOS READY should be displayed. Type: CONl,JERT (ENTER).

The program will ask, SOURCE DR I t.JE?. Type in the number of the drive
containing the Model I diskette, and press (ENTER). Then the program will ask,
DESTINATION DR Il,JE?. Type in the drive number and press (ENTER). In two
drive systems, you must use Drive O as the destination.

During the conversion process, the name of each file will be displayed as it is
copied. If password information is needed, TRSDOS will prompt you for it. If
you know the update password, type it in and press (ENTER). The file will be
copied and given the same update password. If you do not know the update
password, simply press (ENTER), in which case the file will be copied and given
an unknown update password.

If a file name on the source diskette is already used on the destination diskette,
TRSDOS will print this message: F I LE E),(I s Ts • us E I T?. If you type y'
TRSDOS will copy the file. The previous contents of the Model III file will be
lost. If you type N, TRSDOS will skip the file, and get the next one from the
Model I diskette.

69

TRS-80 MODEL Ill DISK SYSTEM

FORMAT
Prepare a Data Diskette

~ll specif I~$ the diak driv~ whictuontains the diskette to
Jjomitt~fl.,tJ~f;,Will~prgmpfvoufor.tbis.inlormalion.~ ..

This command lets you prepare data diskettes (either new or disks which contain
undesired data or programs), leaving a maximum amount of space for your
program and data files.

Note: Data diskettes may only be used in Drives 1, 2, and 3 except during a
BACKUP or FORMAT.

FORMAT takes a blank (new or magnetically erased) diskette, records track/sector
boundaries on it, then initializes it with and creates a directory.

When FORMAT detects a non-blank diskette, it will display a warning message:

DISK CONTAINS DATA, USE DISK OR NOT?

Type Y (Yes) and press (ENTER) if you do want to reformat, N (No) and press
(ENTER) if you want to save the disk information.

FORMAT will lock out any defective tracks to prevent data from being lost in
these areas.

If you begin to get READ errors during access, reformat the disk.

Example

FORMAT :1

After you are prompted for DISKETTE NAME? and MASTER PASSWORD?,
TRSDOS will format Drive 1.

70

HERZSO
Set Up for 50 Hz AC power (non-USA users)

This utility is provided for customers in areas where the AC power is 50 rather
than 60 Hz. It should not be used by any other customers. HERzso simply places
a patch on the diskette that changes the clock speed for 50 Hz users.

HERZS0 is a oo-file that makes a change in the software of TRSDOS. Only the
Drive O diskette is changed. Be sure it is write-enabled before you start the oo
file. Once the HERzso change is done, it will remain in effect for that diskette.

To perform the change, type:

DO HERZ51Zl

Once the change has been made, you will need to reset the system to put the
change into effect. This loads the new software into RAM.

LPC
Line Printer Control

The LPC utility program allows TRSDOS to ignore multiple carriage return
commands. Without LPC, a top-of-form (LPRINT CHR$(12)) command will add an
extra carriage return/line feed each time it is executed. Also, LPC masks the high
bit of each data byte, allowing you to send certain intercepted codes to the
printer. For instance, the BASIC statement LPRINT CHR$(140) will send code 140-
128 = 12 (LPRINT CHR$(12)) to the Printer.

71

TRS-80 MODEL Ill DISK SYSTEM

The printers that require LPC are:

Line Printer Ill (26-1156)
Line Printer VI (26-1166)
Daisy Wheel WP50(26-1157)
Qume Daisy Wheel (26-1157 A)
Daisy Wheel II (26-1158)

and all future printers.

Printers that do not require LPC:

26-1150, 1152, 1153, 1154, 1159, and the A version ofLPIII (26-1156A).

You must load the LPC program before you load an application program. The
easiest way to do this is to copy LPC onto your data/program diskette and then
use the AUTO command to load LPC automatically each time you use the system.
For instance, type:

COPY LPC: 1 : 0 (ENTER)

Then, to make LPC an AUTO command on the diskette, type:

AUTO LPC/CMD (ENTER)

Whenever you use your program diskette, LPC will automatically load into
memory and you can use the program as usual.

LPC locates into the highest available memory. There is no need to set MEMORY
SIZE to protect LPC. It "hides" itself. However, you still need to set memory if
required by your application program. LPC will be killed if the CLEAR command
is used.

Warning: Once the LPC utility program is loaded and installed, you should not
reload it except after a reset. Reloading re-installs the program and uses up more
space each time! LPC will not execute if the Printer has been routed elsewhere.
Also, if LPC has been executed and then the Printer is routed elsewhere, the
original printer driver will regain control after the routing.

MEMTEST
Test Memory

MEMTEST

This program tests your Model Ill's memory (read only and random access). In
TRSDOS READY, just type MEMTEST and press (ENTER).

72

The program automatically tests all memory locations, no matter what memory
size you have. First it checks read only memory (ROM); if everything is okay, it
automatically goes on and checks random access memory (RAM). If all RAM

checks out okay, the program continues.

If the program detects a ROM or RAM error, it will display a detailed message.
Repeat the test to make sure it is a valid error condition. Write the message
down and contact your nearest Radio Shack for assistance.

Note: MEMTEST changes the entire contents of RAM. Before running it, be sure
you have saved any valuable code you may have in RAM.

XFERSYS
Transfer System Files

XFJ:RSYS

XFERSYS lets you upgrade your version of Model III TRSDOS by copying all
system files from a new release diskette (source) onto a previously released
diskette (destination) (i.e., version 1. 2 to version I . 3, etc.).

System files which already exist on the destination diskette are replaced by those
from the source diskette. Files which do not exist on the destination diskette are
added. User files (program and data) are unaffected.

Steps to upgrade a diskette

Make backup copies of all diskettes to be upgraded. This is an important
precautionary step. These backup copies should be kept until the upgrading
process is complete and confirmed.

Note: Both source and destination diskettes must be write-enabled.

Insert the new release of TRSDOS into Drive O and press the RESET button. Then
type)ffERSYS (ENTER).

After the program heading appears, TRSDOS will prompt you with DISKETTE TO
CONt,IERT READY IN DR I l,JE 1 (Y / Q)?. Type Y (yes) or Q (quit) and press
(ENTER).

The upgrading process will then take place. When the process is complete,
TRSDOS will tell you so and take you back to TRSDOS READY.

Note: If an error occurs, including your trying to upgrade a non-system diskette,
the operation will be cancelled and take you back to TRSDOS READY.

73

granules after the one containing the file's EOF mark, are recovered and returned
to the system when the file is closed.

A TRSDOS file
LRN1 [LRN2 [LRN3 [LRN N [EOF

FILE: EXTENT 1 [· EXTENT 2

SEGMENT: ~_G_RA_N_U_L_E_1_~_G_R_A_N_U_L_E_2~I ... I GRANULE 32

GRANULE: SECTORX SECTOR X +1 SECTOR X + 2

SECTOR: BYTE 3 J . . . / BYTE 256 ~----~-----~----~ BYTE 1 BYTE2

LRN: Logical Record Number, used to specify an individual, user-defined
logical record. Such a logical record is the smallest unit of
information which can be addressed during disk input/output (a
physical record is the unit which is actually read from or written to
disk).

File: A group of logical records; the largest unit of information which can
be addressed by a TRSDOS command.

Sector: A physical record, composed of 256 contiguous bytes.

Granule: The minimum allocatable unit of storage for any file.

Extent: One contiguous allocation of granules.

System Routines for Assembly-Language I/O
This information is provided for customers who wish to write their own
assembly level vo routines. An explanation of the calling sequence and
parameters for each necessary 110 routine is given. A knowledge of Z-80 machine
code is assumed.

The following notations are standard in this section:

(HL)= XXXX

A=xx

Registers HL contain the address of (point to) xxxx in machine
format. (If address of xxxx = 34B2H then the values in the
registers are: H = 34; L = 82). Other register pairs will also be
indicated this way.

Register A contains the numeric value of xx in binary form.
Register A is used to return the TRSDOS error code for vo calls.
A complete list of error codes and their meanings appears at
the end of this chapter. Other registers will also be indicated
this way.

75

DCB while $OPEN

Address Length Explanation

DCB+0 3 Reserved
+3 2 Physical Buffer address (LSB/MSB)
+5 1 Offset to delimiter at end of current record
+6 1 File drive number residence
+7 1 Reserved
+8 1 EOF offset of last delimiter in last physical record
+9 1 LRL (logical record length)

+10 2 NRN (next record #-$OPEN sets = X'OOOO'-LSB/MSB)
+12 2 ERN (ending record #-(last in file) LSB/MSB)
+14 50 Reserved

NRN Next Record Number defines which record is to be read or written by the
next system call for $READ or $WRITE. It is automatically incremented by one
after each system call. In order to process random files, use the $POSN call to
direct TRSDOS to the record you wish to transfer next.

ERN Ending Record Number is the last record number currently in the file. It
is put into the directory at $CLOSE time, so if it is expected to be correct, the user
must close his files after adding records to a file. This value may also be used to
position to end of file so that new records may be added to the end of the file. To
position to the end of file use a call to $POSN with a record number of ERN + 1.

$POSN is described later.

Physical and Logical Records in TRSDOS
A physical record is defined as one sector of disk. One sector of disk contains
256 user data bytes. The artificial term "granule" is defined to be 3 sectors of
disk space. There are 6 granules on each of the 40 tracks on the disk. A granule
is the least amount of space allocated by TRSDOS. For programming purposes,
the physical records in a file are numbered from O to N. The largest record
number (N) in a file will then be 3 times the number of granules allocated minus
one ((3*G)- 1). All TRSDOS granule allocations are made as needed at the time
of write, not when the file is created.

Bytes Sectors Granules Tracks Disk

. 256 1
768 3 1

4608 18 6 1
184320 720 240 40 1

Disk Space Table: For each 5¼" Disk Drive

A logical record is defined by the user of TRSDOS. It may be anywhere from 1 to
255 bytes in length. Once a file is opened with a specific LRL (Logical Record

77

TRS-80 MODEL Ill DISK SYSTEM

Length), the length is fixed until the file is closed. To change a file's LRL, you
must CLOSE it and re-OPEN it with the new LRL.

Each opening of the file sets a single, fixed record-length. TRSDOS will "block"
logical records into (or from) one physical record for maximum space utilization
on the disk.

Blocking is putting more than one logical record into one physical record. For
instance, four 64-byte logical records will fit into one 256-byte physical record.
A logical record may be broken into two parts by TRSDOS in order to fill the last
portion of one physical record entirely before beginning to use the next physical
record (i.e. records are spanned). This occurs when the physical record length is
not an even multiple of the logical record length.

If the user wishes to do his own blocking, he may specify a logical record length
of O bytes at the time of INIT/OPEN and must himself manage the contents of the
physical record buffer area of 256 bytes. TRSDOS will not move a logical record
for the user if LRL = O; in this particular case it will only read/write the physical
record to/from the buffer. Once control is shifted to your program, you will have
about 20 bytes of stack size left.

Fundamental TRSDOS I/O Calls

There are 17 fundamental TRSDOS routines involved in handling file I!O. These
are:

$BACKSPACE
$CLOSE
$DIVIDE
$DMULT
$FILPTR
$!NIT
$KILL
$OPEN
$POSEOF

$POSN
$PUTEXT
$RAMDIR
$READ
$REWIND
$SYNTAX
$VERF
$WRITE

The detailed calling sequences and discussions for each of these routines follow.
Note that all of these system calls use register F and do not restore its value
before return. In order to apply this data properly, you should read through all of
these descriptions and clear up all of the points that are not obvious to you by
using other reference materials. If you are successful in doing this you will find
that TRSDOS is a workable tool for your programming ideas.

$INIT-17440/X'4420'
$INIT is provided as an entry point to TRSDOS which will create a new file entry
in the directory and open the DCB for this file. $INIT scans the directory for the
filespec name g:ven in the DCB. If the filespec name is found, $INIT simply opens

78

the file for use. If the name is not found, a new file is created with the filespec
name.

Entry Conditions

(HL) = BUFFER (see beginning of this section for notation)
(DE) = DCB

B = LRL

CALL $!NIT

Exit Conditions

IY = changed
Z = OK

c carry flag is ON if a new file was created
A = TRSDOS error code. (Error codes listed at end of this chapter)

$0PEN-17444/X'4424'
$OPEN provides a way to open the DCB of a file which already exists in the
directory. The DCB must contain the filespec of the file to be opened before entry
to $OPEN.

Entry Conditions

(HL) = BUFFER

(DE)= DCB

B = LRL

CALL $OPEN

Exit Conditions

Z = OK

z = 0 if file does not exist.
A = TRSDOS error code.
IY = changed

$POSN-17474/X'4442'
$POSN positions a file to read or write a randomly selected logical record. Since
it deals with logical records, the proper computation is done to locate which
physical record(s) contain the data. Following a $POSN with a $READ or $WRITE

will transfer the record to/from RAM.

79

in order to satisfy the request, it will do so. "Spanning" will be handled by
TRSDOS as necessary. At $!NIT $OPEN time the DCB value of NRN is set to X'OOOO'

so that the first record will be written. After each logical record is transferred,
the NRN value in the DCB will be incremented by 1 .

If LRL = o, $WRITE transfers one physical record from BUFFER into the disk file
using the NRN in the DCB. BUFFER is defined at $!NIT/OPEN time only. The DCB

value NRN is updated as above, after the WRITE.

Entry Conditions

(HL) = UREC if LRL is not zero. Unused if LRL = 0

DE= DCB

CALL $WRITE

Exit Conditions

Z = OK

A = TRSDOS error code.

$VERF -17 468/X' 443C'
The only difference between $VERF and $WRITE is that $VERF writes one physical
record to disk and then reads it back into a special TRSDOS RAM area not defined
by the user. This special area and the original write buffer are then compared
byte by byte to assure that the record was successfully written.

Entry Conditions

(HLJ = Same as $WRITE above.
(DE) = DCB

CALL $VERF

Exit Conditions

Z = OK

A = TRSDOS error code.

$PUTEXT-17483/X'444B'
This routine will add an extension to a filename if an extension does not already
exist. An extension to a filename may be useful for identifying the type of data
in the file.

81

Entry Conditions

(DE) = DCB

CALL $POSEOF

Exit Conditions

z = Good file specification
NZ = Bad file specification

$SYNTAX-17436/X'441C'
Move a file specification to DCB. This routine takes a file specification and
checks it for validity and moves it to a DCB so that the file may be opened.

Entry Conditions

(HLJ = Filename
(DE) = DCB

CALL $SYNTAX

Exit Conditions

z = Good file specification
NZ = Bad file specification

$DIVIDE-17489/X'4451'
The divide routine takes a 16-bit dividend and an eight-bit divisor. After
division, the quotient replaces the 16-bit dividend and the remainder replaces the
eight-bit divisor.

Entry Conditions

HL = Dividend
A = Divisor
CALL $DIVIDE

Exit Conditions

HL = Quotient
A = Remainder (0 indicates no remainder).

83

TRS-80 MODEL Ill DISK SYSTEM

$DMULT-17486/X'444E'
The multiply routine uses a 16-bit multiplicand and an eight-bit multiplier. After
multiplication takes place, the product replaces the 16-bit multiplicand.

Entry Conditions
HL = Multiplicand
A = Multiplier
CALL$DMULT

Exit Conditions
H = High order byte
L = Middle order byte
A = Low order byte

H L

High Middle

A

Low

$RAMDIR-17040/X'4290'
This routine allows you to examine a diskette directory (one entry or the entire
directory) or the diskette's free space. The information is written into a user
specified RAM buffer.

Only non-system files will be included in the RAM directory.

Entry Conditions
HL = RAM Buffer. If c = 0, size = 1761 [max #*22 + l]. If c = 1 to 96,

size = 22. If c = 255, size = 64.
B = Specified drive number
c = Function switch:

Contents of C Results

0 Gets entire directory into RAM. (See RAM Directory Format).

1-96 Gets one specified directory record into RAM, if it exists. (See
RAM Directory Format).

255 Gets free-space information (See RAM Directory Format).

CALL $RAMDIR

Exit Conditions
NZ = Error occurred.
z = No error. (HLJ = directory or free-space information.

84

RAM Directory Format

The directory is made up of records, one per file. All values are hexadecimal.
Each record placed in user RAM is in the following format:

Byte Number

0-14
15

16

17

18-19

20-21

22

Contents

jilenamelext:d (left-justified followed by spaces)
Protection Level, binary 0-6

Byte EOF, binary 0-255

Logical record length, binary 0-255

Last sector number in file, binary LSB, MSB

Number of Granules allocated (LSB,MSB) binary

" + " (marks the end of directory list after entire directory.)

Free Space Message Format

nnnnn Free Granules

Where nnnnn is a decimal number. The entire message is ASCII-coded.

$FILPTR-17037/X'428D'
This routine provides information on any user file that is currently open. It
enables you to obtain the drive number and the logical file number for any file
and should be used in conjunction with $RAMDIR.

Entry Condition

(DE) = Data Control Block (DCB) defined when file was opened.
CALL $FILPTR

Exit Conditions

NZ = Error occurred.
z = No error. The following registers are set up:
B = Which drive contains the file (0, 1,2, or 3).
c = Logical file number (1-96)

Note: This operates with user files only.

$CLOSE-17448/X'4428'
$CLOSE closes a file from the last processing done. It is very important to do
a $CLOSE on every file opened before the program ends. If you do not close
a file, the directory entry for this file is incorrect if any new records have been

85

$DATE-12339/X'3033'
$TIME-12342/X'3036'
These routines return the date and time in ASCII format:

Date: MM/DD/YY

Time: HH/MM/SS

Entry Conditions

(HL) = Eight-byte buffer to receive the date/time text
CALL $DATE

CALL $TIME

Exit Conditions

(HL) = Date or time text

$D ATLOC-16922/X' 421A'
$TIMLOC-16919/X' 4217'
These locations store the date and time in binary format:

$DATLOC (Three bytes): yy DD yy

$TIMLOC (Three bytes): ss MM HH

$ERRDSP-17417/X'4409'
This routine displays a TRSDOS error message determined by the contents of the
accumulator (A). This register contains an error code (0 = no error) after
completion of any system routine.

Entry Conditions

A = TRSDOS error code (see Table at the end of this section). In a TRSDOS error
code, bits 6 and 7 are normally reset (off). So $ERRDSP interprets them as
controls.

Bit#

7

6

CALL $ERRDSP

Set

Return to caller upon
completion

Give detailed error message

Not Set (Normal
Condition)

Return to TRSDOS upon
completion

Give error number only

87

$CMDDOS-17052/X'429C'
This routine executes a TRSDOS command and returns to the caller.

Entry Conditions
(HL) = Text of TRSDOS command, terminated by X'0D.'

Exit Conditions
All registers are changed.

Caution: TRSDOS commands will overlay RAM up to X'6FFF.'

$CMDTXT -16933/X' 4225'
This is the start address of a buffer containing the last command line entered
under TRSDOS READY. Using this buffer, your program may recover parameters
that were included in the last command line.

For example, given a program named EDITORJCMD, we want the operator to
select an input file name when the program is loaded and executed from TRSDOS

READY:

TRSDOS READY

EDITOR MYFILE

The program, EDITOR, can recover the name of the file in the $CMDTXT buffer.

Note: On entry to a program, (HL) = First non-blank character following the
program name.

$MEMEND-17425/X'4411'
This storage location contains the highest address available. It is normally the
same as the physical end of1RAM, but you may change it for special purposes.

The address is in LSB, MSB sequence.

89

TRS-80 MODEL Ill DISK SYSTEM

TRSDOS Error Codes/Messages
0 No Error Found
1 CRC Error During Disk l/0
2 Disk Drive Not In System
3 Lost Data During Disk l/0
4 CRC Error During Disk l/0
5 Disk Sector Not Found
6 Disk Drive Hardware Fault
7 **Undefined Error Code**
8 Disk Drive Not Ready
9 Illegal 1/0 Attempt

10 Required Command Parameter Not Found
11 Illegal Command Parameter
12 Time Out On Disk Drive
13 l/0 Attempt To Non-System Disk
14 Write Fault On Disk 1/0
15 Write Protected Disk
16 Illegal Logical File Number
17 Directory Read Error
18 Directory Write Error
19 Invalid File Name

~,

20 GAT Read Error
21 GAT Write Error
22 HIT Read Error
23 HIT Write Error
24 File Not Found
25 File Access Denied Due to Password Protection
26 Directory Space Full
27 Disk Space Full
28 Attempt to Read Past EOF
29 Attempt to Read Outside of File Limits
30 No More Extents Available
31 Program Not Found
32 Invalid Drive Number
33 **Undefined Error Code**
34 Attempt to Use Non-program File as a Program
35 Memory Fault During Program Load
36 **Undefined Error Code**
37 File Access Denied Due to Password Protection
38 1/0 Attempt to Unopen File
39 Invalid Command Parameter
40 File Already In Directory
41 Attempt to Open File Already Open

90

DISK BASIC

Introduction

Start-Up
Under TRSDOS READY, type:

BASIC (ENTER)

TRSDOS will load BASIC and begin the ''initialization dialog.''

If you want to recover a Disk BASIC program after returning to TRSDos for a DIR
or other TRSDOS command, use this command under TRSDOS READY:

BASIC * (ENTER)

You will go directly to BASIC's READY mode without any initialization dialog. If
you had a program in memory, it should still be there. You may not be able to
run the program. To be safe, you should immediately save the program, go to
TRSDos, then start BASIC again (no asterisk).

Note: If you have overlaid user memory while in TRSDOS, your program will be
erased. In such a case, you should not restart BASIC, but should use the normal
BASIC start-up procedure.

Initialization
When you start Disk BASIC, you are first asked, HOW MANY FILES?. This lets
you specify the maximum number of files that will be "open" or in use at once.
(See OPEN.) Type in an appropriate number and press (ENTER), or simply press
(ENTER) and BASIC will provide for three files.

For example, if your program requires one input file and one output file, you
should ask for two files.

Note: Normally, BASIC will give all your data files a record length of 256.
(See File Access Techniques.) If you wish to set the record length of each file
individually, use the suffix v for "Variable" after the number of files.
For example,

HOW MANY FI LES? 3t,J (ENTER)

tells BASIC to give you three file-buffers, and to let you set the record length of
each file when that file is first opened.

Note: Disk BASIC automatically creates a buffer for loading, saving, and
merging BASIC programs. This buffer exists in RAM below any data file buffers
you may request. It is always available for program IiO, regardless of how you
answer the FILES? question.

91

TRS-80 MODEL Ill DISK SYSTEM

After you answer the FILES question, BASIC will ask: MEMORY SIZE? Simply
press (ENTER) without typing a number. You will then have the maximum amount
of RAM available for use by BASIC.

If you will want to load and use machine-language programs or routines, you
will have to protect your BASIC memory from these machine-language programs.

In such a case, respond with the highest memory address (in decimal form) you
want BASIC to use for storing and executing your BASIC programs. Addresses
above the number you specify will then be protected from use by BASIC.

Example:
MEMORY SIZE? 32000 (ENTER)

causes BASIC to protect addresses above 32000. If you have 16K of RAM, this
means that you'll have 32767-32000 = 767 bytes protected for storing your
machine-language routines.

After you answer the MEMORY SIZE? question, Disk BASIC will display the
following information:

1 . Which version of Disk BASIC you are using

2. Copyright information

3. The number of free bytes available

4. The number of concurrent files you have requested.

To exit from Disk BASIC and return to the TRSDOS READY mode, type:

CMD II s II (ENTER)

This results in a normal return to TRSDOS, without re-initialization of the system.
You may recover your program if you haven't changed user memory while in
TRSDOS. use BASIC *.

92

DISK BASIC

Enhancements to Model ill BASIC
Disk BASIC adds many features which are not disk-related. They are listed below
along with abbreviated descriptions. Detailed descriptions follow in alphabetical
order.

&H
&0
Abbreviations
CMD"A"
CMD"B"
CMD''C''
CMD"D"
CMD"E"
CMD"I"
CMD"J"
CMD"L"
CMD''0''
CMD"P"
CMD"R"
CMD"S"
CMD"T"
CMD"X"

CMD"Z"
DEFFN
DEFUSR

INSTR
LINE INPUT
MID$=

NAME
USRn

Hexadecimal-constant prefix
Octal-constant prefix
Many commands have abbreviations
Return to TRSDos with error message
Enable/Disable (BREAK)
Delete spaces and remarks from a program (compression)
Display directory for specified drive
Display previous TRSD0S error
Return a command to TRSD0S
Convert calendar date
Load z-so subroutine or program file into RAM
Alphabetizes (sorts) a string array only
Check printer status
Start real-time clock display
Normal return to TRSD0S (jump to EXIT routine)
Tum off real-time clock display
Cross-reference of reserved words, string variables, or
strings in a program
Duplicate output to Display and Printer
Define BASIC-statement function
Define the entry point for an external machine-language
routine
Instring function; find the substring in the target string
Input a line from keyboard
Replace portion of the target string (used on left of equals
sign)
Renumber a program in RAM
Call external routine (n = 0, 1,2, ... ,9)

&Hand &O (hex and octal constants)
Often it is convenient to use hexadecimal (base 16) or octal (base 8) constants
rather than their decimal counterparts. For example, memory addresses and byte
values are easier to manipulate in hex form. &H and &0 let you introduce such
constants into your program.

&Hand &o are used as prefixes for the numerals that immediately follow them:

93

TRS-80 MODEL Ill DISK SYSTEM

The constants always represent signed integers. Therefore any hex number
greater than &H7FFF, or any octal number greater than &077777, will be
interpreted as a negative quantity. The following table illustrates this:

Octal Hex Decimal

&1 &H1 1
&2 &H2 2
&77777 &H7FFF 32767
& 1 00000 &H8000 - 32768
&100001 &H8001 -32767
& 100002 &H8002 - 32766
&177776 &HFFFE -2
& 177777 &HFFFF - 1

Hex and octal constants cannot be typed in as responses to an INPUT prompt
or be contained in a DATA statement. Often the hex or octal constant must be
enclosed in parentheses to prevent a syntax error from occurring.

Examples

PRINT &H5200, &051000

prints the decimal equivalent of the two constants (both equal 20992).

POKE &H3C00, 42

puts decimal 42 (Asen code for an asterisk) into video memory address hex
3COO.

94

Model III Disk BASIC Abbreviations
Abbreviation

~
~
GJ
GJ
(SHIFT)~
(SHIFT)~ (Z)
LXX

EXX

DXX

Meaning

List Previous Program Line
List Next Program Line
List Current Program Line
Edit Current Program Line
List First Program Line
List Last Program Line
List Program Line xx
Edit Program Line xx
Delete Program Line xx

DISK BASIC

AXXX,XXXX Automatic Line Numbering Beginning at Line xxx,
Incrementing by xxxx.

CMD ''A''
Return to TRSDOS

This command allows you to return to TRSDOS with an error message:

OPERATION ABORTED

Sample Use

After an input/output error occurs in a BASIC program, you might want to exit to
TRSDOS and print a message.

CMD"A"

the following will be displayed:

OPERATION ABORTED
TRSDOS READY
♦ ♦ + + + + + + + ♦ + + ♦ + + + + +

95

TRS-80 MODEL Ill DISK SYSTEM

CMD ''B''
Enable/Disable BREAK Key

This command enables or disables the (BREAK) key. While the function is "OFF,"

the (BREAK) key will be ignored except during cassette or printer output or during
serial input/output.

The (BREAK) key will remain disabled even after the program has ended. To
enable the (BREAK) key, use the CMD"B", "ON" command. Returning to TRSDOS

via the CMD"S" or CMD"I" commands will also enable the (BREAK) key.

Examples

CMD"B" ,"OFF"

Disables the (BREAK) key.

CMD"B","ON"

Returns the (BREAK) key to its normal function.

CMD "C"
Compress Program

This command allows you to compress a program so that it requires less
RAM and less storage space on diskette. You can elect to remove all remark

96

DISK BASIC

statements (beginning with REM or ') or to delete all spaces between BASIC

keywords. Spaces inside quotes will not be deleted.

Example
Your program reads as follows:

850 RESTORE: ON ERROR GOTO 800 'DOG PROGRAM
860 READ COMPANY$ 'PET STORE
870 PR I NT RIGHTS (COM PANYS , 2) , : GOTO 860
880 END

If you want to delete the Remarks (lines 850 and 860), type in the command:

CMD"C" ,R

and the program will now read:

850 RESTORE: ON ERROR GOTO 800
860 READ COMPANY$
870 PR I NT RIGHTS (COMPANY$, 2) , : GOTO 860
880 END

If you then wanted to delete the spaces, type in:

CMD"C" ,S

and the program would read:

850 RESTORE:ONERRORGOTO800
860 READCOMPANYS
870 PR I NTR I GHTS (COMPANY$, 2) , : GOTO860
880 END

You could obtain the same results by typing:

CMD"C"

Note: Always provide the closing quotes on string literals in your BASIC

program. Otherwise CMD"C" may not function properly. For example, in

10 PRINT "THIS IS A TEST"

the second quote should be used even though omitting it will not cause an error.

CMD"D"
Display the Directory of a Specified Drive

97

TRS-80 MODEL Ill DISK SYSTEM

By entering the command CMD"D:d", you can obtain a specified diskette's
directory from BASIC without returning to TRSDOS. Only unprotected, visible
files will be displayed. The drive specification is not optional and must be
specified for all drives, including Drive 0.

Example
If you type in the command:

CMD 11 D:1 11

the directory for Drive 1 will be displayed.

CMD"E"
Display Previous TRSDOS error

This command displays the last TRSDOS error message. If no errors have
occurred prior to the command, the message NO ERROR FOUND will be
displayed.

Example
If you have a two-drive system (0 and 1) and you type:

SAl,JE II PROGRAM: 3 11

Disk BASIC will return a DI SK I/0 ERROR. To find out what kind of IIO error
occurred, type: CMD II E 11 (ENTER) and Disk BASIC will return with DI SK DR I t,JE
NOT IN SYSTEM.

CMD''I''
Execute TRSDOS Commands from Disk BASIC

98

DISK BASIC

You may execute TRSDOS commands directly from BASIC by using CMD"I".

This is similar to CMD"S", except that it lets you include a command or Z-80

program for TRSDOS to execute.

As long as BASIC is not overwritten by the execution of the program or
command, control will return to BASIC; otherwise, control will return to TRSDOS.

(TRSDOS commands all overlay BASIC; your Z-80 program may not if it loads
above BASIC.)

Example
CMD II I II 'II PROGRAM II

returns you to TRSDOS and executes the program file PROGRAM.

CMD 11 I II ,A$

returns you to TRSDOS and executes the command contained in A$.

CMD''J''
Calendar Date Conversion

This command converts dates back and forth between two formats: the standard
month, day, year, sequence; and a year, day of year, sequence. The content of
the source string determines which way the conversion goes.

99

TRS-80 MODEL Ill DISK SYSTEM

Example

CMD"J", "11/30/80", D$

Returns the day of the year in D$.

CMD"J", "-79/300", 0$

Returns the month, day, year, equivalent in D$ (the date for the 300th day
of 1979).

Sample Program

10 CLEAR 50
20 LINE INPUT"ENTER FIRST DATE (MM/DD/YY) "i FD$
30 LINE INPUT"ENTER SECOND DATE (MM/DD/YY) "iSD$
ll0 CMD" J" , FD$, D 1 $
50 CMD" J" , SD$, D2$
80 Y1 = VAL(RIGHT$(FD$,2))
70 Y2 = VAL(RIGHT$(SD$,2))
80 J1 = VALIRIGHT$(O1$,3))
90 J2 = VAL(RIGHT$ID2$,3))
100 S1 = Y1•385 + J1
110 S2 = Y2•385 + J2
120 PRINT "THE INTERl,JAL BETWEEN DATES IS";
130 PRINT ABS(S1-S2); "DAYS ";
1ll0 PRINT "(IGNORING LEAP-YEARS),"
150 INPUT "<ENTER> TO CONTINUE"; A$
180 GOTO 20

CMD"L"
Load Z-80 Routine into RAM

cMb"L" .,p11titie; , ;.... . .. > ;. ·· . ·· ..
· ... · ~~ \'\·•• ·.·· ·. . << ·
. . . routinS:i~ ~;~tring"eipr~ssi~n containing a file specification lof az-·a~·

rouiine orprog~am created by the DUMP command. If routi11~•is a
stringi:onslimt1• ifinustbe enclosed in quotes.

CMD"L" loads a Z-80 (machine-language) routine into RAM. It would normally
be used to load a Z-80 subroutine which is to be accessed directly from BASIC.

100

DISK BASIC

The z-so routine should load into high-RAM and must not overlay the memory
protect area reserved when you first entered BASIC (i.e., the MEMORY SIZE?
prompt). If you do not overlay BASIC or TRSDOS, control will return to BASIC
after the program is loaded.

Example

The command:

CMD"L" ,"PROG"

will load a program file named PROG into RAM.

CMD"L" ,P$

will load a program which has been specified as P$.

CMD"O"
Sort ("Order") an Array

cM~i•o•~i~rtav(st,riJ ·' .
xlsil~'miegervari.a~le containing the number ofitemsto.beJ1.orte4.;,

'a~tJitart)spetifies an array element. The. array~ontains fhe.tla'tli to be
sqrted, an.d ~tarns the subscript of the first elen'lent to be sorted; lhe
array must be one-dimensional, string type. lhe string elemtnttin ·
arrayrilay beof any length.

This command sorts (orders) a one-dimensional string array, i.e., a list. You
may sort all or part of the array, depending on the values you give to x and start.

Sample Program
112) CLEAR 112) * 25 + 512l
212) DIM A$(8)
312) FOR WD = l2l TO 8
412) PRINT "ENTER WORD
512) INPUT A$(WD)
612) ND(T WD
712) No/.,= 112l: CMD"O", No/..'
812) PRINT "HERE IS THE
812) FOR WD=l2l TO 8

'ROOM FOR 112l WORDS+ EXTRA
'LIST OF TEN (12l-8)

:11:"; WD+l

A$ (l2l)
SORTED LI ST II

101

TRS-80 MODEL Ill DISK SYSTEM

100 PRINT A$(WD)
110 ND(T WO

CMD''P''
Check Printer Status

CMD"P" makes it possible for Disk BASIC to check the status of the printer.

Unlike the video display, the printer is not always available. It may be
disconnected, offline, out of paper, etc. In such cases, when you try to output
information to the printer, the Computer will wait until the printer becomes
available. It will appear to "hang up." To regain keyboard control (and cancel
the printer operation), press (BREAK).

Suppose you have a program which uses printer output. If a printer is not
available, you don't want the Computer to stop and wait for it to become
available. Instead, you may want to print a message such as PRINTER
UNAt.JA I LAB LE and go on to some other operation.

To accomplish this, you need to check the printer status. CMD"P" can be used to
check the printer's status at any time. It returns the contents as an ASCII-coded
decimal number. The specific value of this number depends upon the type of
printer you are using as well as its status at any particular time. The value may
then be printed or examined by the program.

Only the four most significant bits are used in this "status byte." In binary,
these must be: ''0011 '' or else the print operation will not be attempted. To
check for this "go" condition, AND the status byte with 240 and compare the
result with 48. The meaning of each status bit depends on which printer you
use. See the printer owner's manual for bit designations.

Sample Program
10 CMD 11 P11 ,)-($
20 ST%= VAL(X$) AND 240
30 IF ST'X, < > 48 THEN PR I NT II PRINTER UNAt,JA I LABLE 11

: STOP
40 PR I NT II PRINTER At.JA I LABLE 11

50 REM PROGRAM MAY NOW CONTINUE

102

DISK BASIC

CMD"R"
Turn On Clock-Display

This command controls the real-time clock display in the upper-right corner of
the Video Display. When it is on, the 24-hour time will be displayed and
updated once each second, regardless of what program is executing.

Note: The real-time clock is always running (except during cassette or disk I!O),
regardless of whether the display is on or off.

Example

To tum on the clock display type: CMD II R II To tum the display off, type: CMD II T 11

CMD"S"
Return to TRSDOS

To exit from Disk BASIC, returning control to TRSDOS, simply type in the
command:

CMD 11 S 11

To return to BASIC and recover your program, use BASIC *. However, recovery
will not always be possible. See BASIC *.

Example

The BASIC prompt lets you know you are in Disk BASIC.

READY
>

103

TRS-80 MODEL Ill DISK SYSTEM

To exit, type in:

CMD 11 S 11

and the TRSDOS prompt will appear.

TRSDOS READY
♦ + ♦ ♦ + ♦ ♦ ♦ ♦ ♦ ♦ ♦ + ♦ ♦ + ♦

CMD''T''
Turn Off Clock-Display

This command turns off the real-time clock display function.

However, the clock continues to run.

Example

To stop the clock display update type: CMD "T 11

To start the display, type: CMD II R 11

CMD "X"
Cross-reference of Program Lines

104

··cwi·~x~J, ·utrge#
tirget 1leith~r ~ BA~IC reserved word (such as PRINT) or a sfrii1a:I11hftiif l'r,r•

is a reserved word, it must not be enclosed in quotes; ii it is a string~
titeral, it must be enclosed in quotes.

DISK BASIC

This command finds all occurrences of a reserved word or other string literal in
the resident program. The "finds" are listed on the display as five-digit line
numbers.

To search for any BASIC reserved word (including reserved arithmetic operators),
use the keyword as-is. To search for anything else (including variable-names and
text), enclose the text inside quotes.

For example, suppose you have the following program in memory:

10 PRINT "THIS IS A TEST"
20 IN PUT "PRESS <ENTER> FOR THE NE)<T PR I NT MESSAGE" ; Z$
30 A= A+ 1
ll0 PRINT "+++++++"

CMD ")-(" , PR I NT will find all occurrences of PRINT, except for cases where
PRINT was part of a quoted string: lines 10 and 40.

CMD
20.

11\/11
1\ t "PR I NT" will find all occurrences of "PRINT" as a string literal: line

CMD ">I" , + will list line 30, but CMD "){" , "+" will list line 40. CMD ")-(" ,
"A" will list lines 10, 20, and 30. Notice that variables and text are both treated
as string literals.

CMD ''Z''
Duplicate Output to Video and Printer

. '
. ~fAO' 'Z'', . ''iwlfllh''

S.Vilteh isJi,itberoN or OFF. switch must be enclosed. in quotatioo,marlcs •.

This command enables or disables dual video/printer output. While the function
is "oN," all video output is copied to the printer, and all printer output is copied
to the video. (The printer must be on-line when you turn dual output "oN.")

Video and printer output may differ due to intrinsic differences in the printer and
video devices.

Examples

CMD "Z" I "ON"

Turns dual video/printer output on.

105

TRS-80 MODEL Ill DISK SYSTEM

CMD"Z", "OFF"

Tums dual video/printer output off.

DEFFN
Define Function

The DEF FN statement lets you create your own function. That is, you only
have to call the new function by name, and the associated operations will
automatically be performed. Once a function has been defined with the DEF FN

statement, you can call it simply by inserting FN in front of function name. You
can use it exactly as you might use one of the built-in functions, like SIN, ABS,

and STRING$.

The type of variable used for function name determines the type of value the
function will return. For example, if function name is single precision, then that
function will return a single-precision value, regardless of the precision of the
arguments.

The particular variables you use as arguments in the DEF FN statement
(argument-I, ...) are not assigned to the function. When you call the function
later, any variable name of the same type can be used.

Furthermore, using a variable as an argument in a DEF FN statement has no effect
on the value of that variable. So you can use that particular variable in another
part of your program without worrying about interference from DEF FN.

The function can be defined with no arguments at all, if none are required.
For example:

DEF FNR = RND (80) + 8

defines a function to return a random value between 10 and 99.

106

~ ..

DISK BASIC

Examples
DEF FNR(A,B) =A+ INT((B - (A - 1)) * RND(0))

This statement defines function FNR which returns a random number between
integers A and B. The values for A and B are passed when the function is
"called;' i.e., used in a statement like:

Y = FNR(R1, R2)

If Rl and R2 have been assigned the values 2 and 8, this line would assign a
random number between 2 and 8 to Y.

DEF FNL$()0 = STRING$(}(, 11
-

11
)

Defines function FNL$ which returns a string of hyphens, x characters long.
The value for x is passed when the function is called:

PRINT FNL$(3)

This line prints a string of 30 hyphens.

Here's an example showing DEF FN used for a complex computation -in
double-precision.

DEF FN}(#(A#, B#) = (A# - B#) * (A# - 5#)

Defines function FNX# which returns the double-precision value of the square of
the difference between A# ands#. The values for A# ands# are passed when
the function is called:

We assume that values for A# and s# were assigned elsewhere in the program.

Sample Program
710 DEF FNV(T) = (1087 + SQR(273 + Tl)/18,52
720 INPUT "AIR TEMPERATURE IN DEGREES CELSIUS"; T
730 PR I NT II THE SPEED OF SOUND IN A IR OF II T II DEGREES

CELS I us Is II FNl,J (T) II FEET PER SECOND+ II

107

TRS-80 MODEL Ill DISK SYSTEM

DEFUSR
Define Point of Entry for USR Routine

DEFUSR lets you define the entry points for up to 10 machine-language routines.
In non-Disk BASIC, the addresses were POKEd into RAM. This POKE method
cannot be used in Disk BASIC.

Examples

DEFUSR3 = &,H7D00

assigns the entry point x·moo·, 32000 decimal, to the USR3 call. When your
program calls USR3, control will branch to your subroutine beginning at x·moo·.

DEFUSR = (BASE+ 16)

assigns start address (BASE + 16) to the USR0 routine.

Note: When decimal addresses are given, they are evaluated as signed two-byte
integers. So, for addresses above 32767, use desired decimal address -65536.
See USRn.

INSTR
Search for Specified String

108

DISK BASIC

This function lets you search through a string to see if it contains another string.
If it does, INSTR returns the starting position of the substring in the target string;
otherwise, zero is returned. Note that the entire substring must be contained in
the search string, or zero is returned. Also, note that INSTR only finds the first
occurrence of a substring at the position you specify.

Examples

In these examples, A$ = "LINCOLN":

INSTR (A$, "INC")

returns a value of 2.

INSTR (A$, "12")

returns a zero.

INSTR(A$, "LINCOLNABRAHAM"I

returns a zero. For a slightly different use of INSTR, look at

INSTR (3, "1232123", "12"1

which returns 5.

Sample Program

This program gets search and target text from the keyboard, then locates all
occurrences of the target text in the search text. Line 90 is just for "show."

10 CLEAR 1000
20 CLS
30 INPUT "SEARCH TE>(T" i S$
40 INPUT "TARGET TEXT"i T$
45 CLS
50 C = 0 : P = 1 'P = POSITION, C = COUNT
60 F = INSTR<P,S$,T$1
70 IF F = 0 THEN 120
80 C = C + 1
80 PRINT @0,LEFT$(S$,F-11 + STRING$1LENIT$1 ,181) +

RIGHT$(S$,LEN(S$)-F-LEN(T$)+11
100 P = F + LEN(T$1
110 IF P <= LENIS$) - LEN(T$) + 1 THEN 60
120 PRINT "FOUND "i Ci "OCCURRENCES"

109

TRS-80 MODEL Ill DISK SYSTEM

LINE INPUT
Input a Line from Keyboard

LINE INPUT (or LINEINPUT- the space is optional) is similar to INPUT, except:

• The Computer will not display a question mark when waiting for your
operator's input.

• Each LINE INPUT statement can assign a value to just one variable.

• Commas and quotes your operator can use as part of the string input.

• Leading blanks are not ignored- they become part of variable.

• The only way to terminate the string input is to press (ENTER).

LINE INPUT is a convenient way to input string data without having to worry
about accidental entry of delimiters (commas, quotation marks, colons, etc.).
The (ENTER) key serves as the only delimiter. If you want anyone to be able to
input information into your program without special instructions, use the LINE

INPUT statement.

Some situations require that you input commas, quotes and leading blanks as
part of the data. LINE INPUT serves well in such cases.

Examples

LINE INPUT A$

Input A$ without displaying any prompt.

LINE INPUT "LAST NAME, FIRST NAME? "jN$

Displays a prompt message and inputs data. Commas will not terminate the
input string, as they would in an input statement.

Sample Program

200 REM CUSTOMER SUR 1•1EY
205 CLEAR 1000
207 PRINT

110

210
220
230
235
240

LINE
LINE
LINE
PRINT
PRINT

INPUT
INPUT
INPUT

A$:

"TYPE IN
"DO YOU
"WHY? II•

'
PRINT

DISK BASIC

YOUR NAME II•

' A$
LIKE YOUR COMPUTER? II•

' 5$
C$

250 IF 5$= "NO" THEN 270
260 PR I NT "I LI KE MY COMPUTER BECAUSE II i C$: END
270 PRINT II I DO NOT LIKE MY COMPUTER BECAUSE "; C$

Notice that when line 210 is executed, a question mark is not displayed after the
statement, "Type in your name." Also, notice on line 230 you can answer the
question "Why" with a statement full of delimiters, commas and quotes.

MID$=
Replace Portion of String

~oj(1tt•t1i11g,jii,titfop,Jenyth) = replacement•string
oldsfr1ngJ;s.t~~ vai:iabte~name of the string you wanttqcli"q~~;\;
positlanJs1henume.ric expression specifying. the.p9sit~n;:;~·ffielitstf;

ch~racterto;be changed.

length is a lllJmeric expression specifying the number.of ;~aiac)~r$ tq)i•
.replaced. · ·

replacemtnt-string is a string expression to replace the specified portion
of oldstring.

Note: If replacement•string is shorter than length, then the. entire rf placement~
string will be used. ·

This statement lets you replace any part of a string with a specified new string,
giving you a powerful string editing capability.

Note that the length of the resultant string is always the same as the original
string.

Examples

A$ = "LINCOLN" in the examples below:

MID$(A$, 3, 4) = "12345": PRINT A$

which returns LII234N.

111

TRS-80 MODEL Ill DISK SYSTEM

MID$ (A$, 1 , 2) = "": PR I NT A$

which returns LINCOLN.

MID$(A$, 5) = "12345": PRINT A$

returns LINCI23.

MID$(A$, 5) = "01": PRINT A$

returns LINC0IN.

MID$(A$, 1, 3) = "***": PRINT A$

returns ***COLN.

Sample Program

770 CLS: PRINT: PRINT

780 LINE INPUT "TYPE IN A MONTH AND DAY MM/DD, "; S$

780 P = INSTR(S$, "/")

800 IF P = 0 THEN 780

810 MID$(S$, P, 1) = CHR$(45)

820 PRINT S$ " IS EASIER TO READ, ISN'T IT?"

This program uses INSTR to search for the slash("/"). When it finds it
(if it finds it), it uses MID$= to substitute a " - " (CHR$(45)) for it.

NAME
Renumber the Current Program

112

Examples

NAME

Renumbers the entire program: 10, 20, 30, ...

NAME 8000,5000,100

DISK BASIC

Renumbers all lines numbered from 5000 up; the first renumbered line will
become 6000, and the following lines will be incremented by 100. All line
references within your program will be renumbered also.

USRn
Call to User's External Subroutine

e: of 'ten .available USR. v, u,,;u,--.

aisumed.
11;,11&1a1:e:r:from - 32768 to 32767 and is passed as a~ int"ger

::~>,11-mi:uiftoJhe routine. ·
j.;~: ;•:if~-~.';::~:?~\~:~\(~:
·~::t:~~:{ r-0~ ~~~/.

These functions (usRo through USR9) transfer control to machine-language
routines previously defined with DEFUSRn statements.

When a URS call is encountered in a statement, control goes to the address
specified in the DEFUSRn statement. This address specifies the entry point to your
machine-language routine.

Note: If you call a usRn routine before defining the routine entry point with
DEFUSRn, an ILLEGAL FUNCTION CALL error will occur.

You can pass one argument and retrieve one output value directly via the USR

argument; or you can pass and retrieve arguments indirectly via POKE and PEEK

statements.

Example

1.0 DEFUSR1=&H7D00
20 REM+++MORE PROGRAM LINES HERE
100 A=USR1()0

The effect of this sequence is to:

113

TRS-80 MODEL Ill DISK SYSTEM

I. Define usR as a routine with an entry point at hex 7D00 (line 10).

2. Transfer control to the routine; the value x can be passed to the routine if the
routine makes the CALL described below (line 100).

3. When the routine returns to BASIC, the variable A may contain the value
passed back from the routine (if your routine makes the JUMP described
below); otherwise A will be assigned the value of x (line 100).

Passing arguments to and from USR routines

There are several ways to pass arguments back and forth between your BASIC
main program and your USR routines: the two major ways are listed below.

1. POKE the argument(s) into fixed RAM locations. The machine-language routine
can then access these values and place results in other RAM locations. When
the routine returns control to BASIC, your program can PEEK into these
addresses to pick up the "output" values. This is the only way to pass two
or more arguments back and forth.

2. Pass one argument to the routine as the argument in the usRn call, then use
special ROM calls to access this argument and return a value to BASIC. This
method is limited to sending one argument and returning one value (both
are integers).

ROM Calls

CALL 0A 7FH Puts the USR argument into the HL register pair; H contains MSB, L
contains LSB. This CALL should be the first instruction in your USR
routine.

JP 0A9AH Use this JUMP to return to BASIC; the integer in HL becomes the
output of the USR call. If you don't care about returning HL, then
execute a simple RETurn instruction instead of this JUMP.

Listed below is an assembled program to white out the display (an "inverse"
CLEAR key!). Don't type it in. Type in the BASIC program that follows it.

1111111111111
11111111111 ZAP OUT SCREEN USR FUNCTION
11111112111

7D111111 11111113111 ORG 7D111111H
1111111 ll 111
11111115111 EQUATES
11111116111

3C111111
111111BF
1113FF

11111117111 1•1IDEO EOU 3C111111H lSTART OF VIDEO RAM
11111118111 WHITE EOU 111BFH lALL WHITE GRAPHICS
11111119111 COUNT EOU 3FFH lNUMBER OF BYTES TO
1111112111111
11111121111 PROGRAM CHAIN MO 1•1ES }{ 'BF I INTO ALL OF t,J IDEO RAM
11111122111

114

BYTE
MO%

-,

r---,

DISK BASIC

7D011! 21003C 11)11)2311) ZAP LO HL ,t.JIDEO ;souRCE ADDRESS
7D11)3 36BF 11)11)2411) LO (HL) ,WHITE iPUT OUT 1ST BYTE
7D05 11013C 11)02511) LO DE ,t.JIDEO+l iDESTINATION ADDRESS
7D08 01FF03 11)11)2611) LO BC,COUNT iNUMBER OF ITERATIONS
7D0B EDB0 11)11)2711! LDIR iDO IT TO IT'!!

11)11)2811!
7D11!D cs 11)11)2811) RET iRETURN TO BASIC
7D011! 11)11)311)11) END ZAP

This routine can be POKEd into RAM and accessed as a USR routine. First start BASIC and answer the
MEMORY SIZE question with 31888. Then run the program.

111)11) / PROGRAM: USR1
1111! 'EXAMPLE OF A USER MACHINE LANGUAGE FUNCTION
115 ' DEPRESS THE '@' KEY WHILE NUMBERS ARE PRINTING TO STOP
1211) '
1311! '******* POKE MACHINE PROGRAM INTO MEMORY*******
1411) I

1511) DEFUSR1 = Pi,H7D00
1611) FOR },{ = 3211)11)11) TO 3211)13 '7D00 HEX EQUAL 320011! DECIMAL
1711) READ A
1811) POKE \I ,, ' A
1811) NE>(T }{

182 '
184 ' ******* CLEAR SCREEN & PRINT NUMBERS 1 THRU 1011! *******
186 '
2011! CLS
205 PRINT TAB(15); "WHITE-OUT USER ROUTINE": PRINT
2111! FOR X = 1 TO 1011!
2211! PR I NT){;
225 A$ = INKEY$: IF A$ = "@" THEN END
230 NE>:T >(

2411) I

2511! '******* JUMP TO WHITE-OUT SUBROUTINE*******
2611) '
2711!){ = USR1 (11!)
2811) FOR }(= 1 TO 111)11)(2): NE){T){ 'DELAY LOOP
2811! GOTO 200
311)11) I

3111! ' ******* DATA IS DECIMAL CODE FOR HE>: PROGRAM*******
3211) '
330 DATA 33 ,0 ,611! ,54 t181 ,17 t1 ,611! t1 ,255 ,3 ,237 t176 ,201

Run the program. An equivalent BASIC white out routine takes a long time by comparison!

115

TRS-80 MODEL Ill DISK SYSTEM

Disk-Related Features
Disk BASIC provides a powerful set of commands, statements and functions
relating to disk vo under TRSDOS. These fall into two categories:

1. File manipulation: dealing with files as units, rather than with the distinct
records the files contain.

2. File access: preparing data files for vo; reading and writing to the files.

Under the heading, File Manipulation, we will discuss the following
commands.

KILL

LOAD

MERGE

RUN''program''

Delete a program or data file from the disk

Load a BASIC program from disk

Merge an ASCII-format BASIC program on disk with one
currently in RAM

Load and execute a BASIC program stored on disk

SA VE Save the resident BASIC program on disk

Under the heading, File Access, we will discuss the following statements and
functions.

Statements
OPEN

CLOSE

INPUT#

LINE INPUT#

PRINT#

FIELD

GET

PUT

LSET

RSET

Functions

CVD

CVI

CVS

EOF

LOC

116

Open a file for access (create the file if necessary)

Close access to the file

Read from disk, sequential mode

Read a line of data, sequential mode

Write to disk, sequential mode

Assign field sizes and names to random-access file buffer

Read from disk, random access mode

Write to disk, random access mode

Place value in specified buffer field, add blanks on the
right to fill field

Place value in specified buffer field, add blanks on the left
to fill field

Restore double-precision number to numeric form after
GETting from disk

Restore integer to numeric form after GETting from disk

Restore single-precision number to numeric form after
GETting from disk

Check to see if end of file encountered during read

GET current record number.

LOF

MKD$

MK.I$

MKS$

DISK BASIC

Return number of last record in file

Convert double-precision number to string so it can be PUT

on disk

Convert integer to string so it can be PUT on disk

Convert single-precision number to string so it can be PUT

on disk

117

TRS-80 MODEL Ill DISK SYSTEM

File Manipulation

KILL
Delete a File from the Disk

spetlfilillon>tor an existingtile.

This command works like the TRSDOS KILL command - see TRSDOS Library
Commands.

Example

KILL"OLDFILE/BAS,PSWI"

deletes the file specified from the first drive which contains it.

Do not KILL an open file, or you may destroy the contents of the diskette. (First,
CLOSE the open file.)

LOAD
Load BASIC Program File from Disk

") tf}JUJ ,xp$ [.al ..
wnere,X#1$~ttfinesatn,$pec: for a eAs1c program file stored on di~~) ..

•:lte:lts.~c tcH,un tb~ profram after i.t is loaded'.

This command loads a BASIC program file into RAM; if the R option is used,
BASIC will proceed to RUN the program automatically; otherwise, BASIC will
return to the command mode.

118

DISK BASIC

LOAD without the R option clears all variables and closes all open files. LOAD

with the R option clears all variables but does not close the open files.

LOAD with the R option is equivalent to the command RUN exp$,R. Either of
these commands can be used inside programs to allow program chaining- one
program calling another, etc.

Example
LOAD"PROGl/BAS:2"

Clears resident BASIC program and loads PROGi/BAS from Drive 2; returns to
BASIC command mode.

MERGE
Merge Disk Program with Resident Program

MERGE is similar to LOAD- except that the resident program is not erased before
the new program exp$ is loaded. Instead, the new program is merged into the
resident program.

That is, program lines in exp$ will simply be inserted into the resident program
in sequential order. If line numbers in exp$ coincide with line numbers in the
resident program, the resident lines will be replaced by those from exp$.

119

TRS-80 MODEL Ill DISK SYSTEM

Program on Disk

+

Sample Use
Save this program in ASCII format.

1000 REM, • , SUBROUTINE TO SAY HELLO
1010 PRINT "HELLO! 11

1020 RETURN

Type NEW (ENTER), then type in this program.

100 CLS
110 PRINT "LET'S CALL THE SUBROUTINE ♦

120 PRINT "DIALING NOW • ♦
II

♦

130 FOR I= 1 TO 1000 : NE)-(T
140 GOSUB 1000
150 PRINT "BACK FROM SUBROUTINE,"
160 END

Program in Ram

10

20

30

40

50

60

70

90

♦ ♦

Merged Program in Ram

20

30

40

50

60

70

Now type MERGE ''file" using the file name given to the first file. List the program. Then run it.

RUN''program''
Load and Execute a Program from Disk

120

DISK BASIC

This command loads and executes a BASIC program stored on disk. It may be
used inside a program to allow chaining (one program calling another).

Examples

RUN "PROG"

Loads and executes PROG (all open files are closed first).

A$="NEWPROG"
RUN A$, R

Loads and executes NEWPROG (all open files remain open).

SAVE
Save Program onto Disk

This command lets you save your BASIC programs on disk. You can save the
program in compressed or ASCII format.

Using compressed format takes up less disk space and is faster during both
SA vEs and LOADS. Using the ASCII option makes it possible to do certain things
that cannot be done with compressed format BASIC files.

For example:

• The MERGE command requires that the disk file be in ASCII form.

• Programs which read in other programs as data will typically require that the
data programs be stored in Ascn.

• The TRSDOS command APPEND also requires that disk files be in ASCII form.

121

TRS-80 MODEL Ill DISK SYSTEM

Examples
SAl,JE II FI LE 1 /BAS, J0HNQD0E: 3"

saves the resident BASIC program in compressed format with the file name FILEl,

extension !BAS, password .JOHNQDOE; the file is placed on Drive :3.

SAt,JE"MATHPAK/n(T" ,A

saves the resident program in ASCII form, using the name MATHPAK/TXT, on the
first nonwrite-protected diskette.

Upon completion of a SAVE, BASIC returns in the command mode.

122

DISK BASIC

File Access
This section is divided into four parts:

1 . Creating files and assigning buffers - OPEN and CLOSE

2. Statements and functions

3. Sequential I/O techniques

4. Random 110 techniques

If this is your first experience with disk file access, you should concentrate on
parts 1, 3 and 4, perhaps just skimming through part 2 to get a general idea of
how the functions and statements work. Later you can go back to part 2 and
learn the details of statement and function syntax.

Creating Files and Assigning Buffers
During the initialization dialog, you type in a number in response to HOW MANY

FILES? The number you type in tells BASIC how many buffers to create to handle
your disk accesses (reads and writes).

Each buffer is given a number from 1 to 15. If you type:

HOW MANY FI LES? 3t,J (ENTER)

BASIC sets aside 3 buffers, numbered 1,2,3.

You can think of a buffer as a waiting area that data must pass through on the
way to and from the disk file. When you want to access a particular file, you
must tell BASIC which buffer to use in accessing that file. You must also tell
BASIC what kind of access you want- sequential output, sequential input, or
random input/output.

All this is done with the OPEN statement, and "undone" with the CLOSE

statement.

OPEN
Open a File

123

TRS-80 MODEL Ill DISK SYSTEM

o $tt.q.Dentiailloutpulstarting at the first record. If the file4foat
found, it.will be created. ··

E (Extend) $t~Ut~tfaloutput starting at end of file.· 11 the ... f ::i:.!tle .. :,,";':csr:,'.11,~l:.o:.t;;(i~''.
found.,.;H,wUM>e cre.ated. ..· ··•··

. R; ... Random?fnputLoutput. If the file is not found' itWitl b,Pcfeat"''· ¥\\?•·.,,,.,c;;C;i;

If mode is a constant, it must be enclosed in quotes.

buffer is a numeric expres.slon specifying which buffer is to be

file is a string expression .containing the file specification, If a co11st.8:,.
used, it must be enclosed in quotes.

record-length is a numeric expression from o to 256 specifyingJbQ,lotit8l•:,.
record length. o is the same as 256. This optio" may oJ)jyJ)e'.'~$,if:,iii,,,
variable-length records were requested during initiaHzatian{H:r,w · ·
t.fanyFites?)~ H record•lengthis omitted, 256 is u.sed. recQriHi,

. is ,used with Rand am access only. · ·

This statement lets you create a file, write data into it, update it, and read it. For
details on file access, see Methods of Access later in this section.

If .file includes a drive specification, BASIC will use only the specified drive. If
no drive is specified, BASIC will search for a matching file, starting with the
master drive (usually Drive 0).

Examples

OPEN 11 0 11
, 1, "DATAFILE"

Opens DATAFILE (creates it if it doesn't already exist) for sequential output.
Output will be done through buffer #1. Records will be 256 bytes long. Since
the "o" mode is specified, output will start at the first record in the file.
If "E" is used instead of "o", output will start at the end of the file.

OPEN "R", 2, "PAYROLL/A: 1", 84

Opens/creates PAYROLL/A for random input/output. Access will be through
buffer #2. Records will be 64 bytes long (if BASIC was initialized for variable
length records).

BUFFER= 3: FILES= "DATA": RECLN = 128

OPEN "R", BUFFER, FILES, RECLN

Opens/creates DATA for random input/output. Access will be through buffer #3.
Records will be 128 bytes long (if BASIC was initialized for variable-length
records).

124

··~

DISK BASIC

CLOSE
Close Access to the File

This command terminates access to a file through the specified buffer(s).
If nmexp has not been assigned in a previous OPEN statement, then

CLOSE nmexp

has no effect.

Examples
CLOSE 1 ,2,8

Terminates the file assignments to buffers 1, 2 and 8. These buffers can now be
assigned to other files with OPEN statements.

CLOSE FIRST%+COUNT%

Terminates the file assignment to the buffer specified by the sum
(FIRST%+ COUNT%).

Do not remove a diskette which contains a file opened for writing (mode = 0,
E, or R). First close the file. This is because the last 256 bytes of data may not
have been written to disk yet. Closing the file will write the data, if it hasn't
already been written.

Any modification to the resident program (NEW, editing, LOAD, MERGE, etc.)
will cause open files to be closed.

125

TRS-80 MODEL Ill DISK SYSTEM

INPUT#
Sequential Read from Disk

This statement inputs data from a disk file. The data is input sequentially. That
is, when the file is first opened, a pointer is set to the beginning of the file.
Each time data is input, the pointer advances. To start over reading from the
beginning of the file, you must close the file and re-open it.

INPUT# doesn't care how the data was placed on the disk-whether a single
PRINT# statement put it there, or whether it required 10 different PRINT#

statements. What matters to INPUT# are the positions of the terminating
characters and the EOF marker.

To INPUT# data successfully from disk, you need to know ahead of time what
the format of the data is. Here is a description of how INPUT# interprets the
various characters it encounters when reading data.

When inputting data into a variable, BASIC ignores leading blanks; when the
first non-blank character is encountered, BASIC assumes it has encountered the
beginning of the data item.

The data item ends when a terminating character is encountered or when a
terminating condition occurs. The particular terminating characters vary,
depending on whether BASIC is inputting to a numeric or string variable.

Special Note

Here's an important exception to keep in mind in reading the following material.

When (ENTER) (a carriage return) is preceded by~ (a line feed), the (ENTER) is
not taken as a terminator. Instead, it becomes a part of the data item (string
variable) or is simply ignored (numeric variable).

(To enter the ~ character from the keyboard, press the down-arrow character.
To enter the (ENTER) character, press (ENTER).)

This exception applies to all cases noted below where (ENTER) is said to be a
terminator.

126

Numeric Input

Suppose the data image on disk is

1,234 -33 27 (ENTER)

DISK BASIC

(ENTER) denotes a carriage-return character (ASCII code decimal 13).

Then the statement

INPUT#l, A,B,C

or the sequence of statements

INPUT#l ,A: INPUT#l ,B: INPUT#l ,C

will assign the values as follows:

A= 1.234

B= -33

C=27

This works because blanks and (ENTER) serve as terminators for input to numeric
variables. The blank before 1.234 is a "leading blank;' therefore it is ignored.
The blank after 1.234 is a terminator; therefore BASIC starts inputting the second
variable at the - character, inputs the number - 33, and takes the next two
blanks as terminators. The third input begins at the 2 and ends with the 7.

String Input

When reading data into a string variable, INPUT ignores all leading blanks;
the first non-blank character is taken as the beginning of the data item.

If this first character is a double-quote ("), then INPUT will evaluate the data as
a quoted string: it will read in all subsequent characters up to the next double
quote. Commas, blanks, and (ENTER) characters will be included in the string.
The quotes themselves do not become a part of the string.

If the first character of the string item is not a double-quote, then INPUT will
evaluate the data as an unquoted string: it will read in all subsequent characters
up to the first comma, or (ENTER). If double-quotes are encountered, they will be
included in the string.

For example, if the data on disk is:

PECOS, TEXAS"GOOD MELONS"

Then the statement

INPUT#l, A$,B$,C$

127

TRS-80 MODEL Ill DISK SYSTEM

would assign values as follows:

A$=PECOS
B$= TEXAS "GOOD MELONS"

C$ = null string

If a comma is inserted in the data image before the first double quote, C$ will
get the value, GOOD MELONS.

These are very simple examples just to give you an idea of how INPUT works.
However, there are many other ways to input data-different terminators,
different target variable types, etc.

Rather than taking a shotgun approach and trying to cover them all, we'll give a
generalized description of how input works and what the terminating characters
and conditions are, and then provide several examples.

When BASIC encounters a terminating character, it scans ahead to see how many
more terminating characters it can include with the first terminator. This ensures
that BASIC will begin looking for the next data item at the correct place.

The list below defines the various terminating sets INPUT# will look for. It will
always try to take-in the largest set possible.

Numeric-input terminator sets

end of file encountered
255th data character encountered
,(comma)
(ENTER)
(ENTER) ~

[. . .] [(ENTER)]
[...] [(ENTER)~]

Quoted-string terminator sets
end of file encountered
255th data character encountered
" (double quote)
" [...][,]
" [...] [(ENTER)]
" [...][(ENTER) ~]

Unquoted-string terminator sets

end of file encountered
255th data character encountered

(ENTER)[~]

Figure 13 describes how INPUT# assigns data to a variable.

128

START

IGNORE IT

Figure 13. Input process.

PICKUP THE

TERMINATOR

SET

GET DATA FROM
TEMPORARY

SAVE AREA

NO
PUT IT INTO

TEMPORARY

SAVE AREA

EVALUATE IT

DISK BASIC

ASSIGN TO

VARIABLE

The following table shows how various data images will be read-in by the
statement:

INPUT#l ,A,B,C

Ex.# Image on disk
Values

assigned

1 123,45 (ENTER)~ 8, 2E4 71i:lli:lli:l(ENTER) A= 123.45
8=82000
C=7000

2 3~(ENTER) 4 (ENTER)5 (ENTER) A 12 eof A=34
8=5
C=0

3 1 , ,2 ,3 ,4 (ENTER) A=1
8=0
C=2

4 1 ,3, eof A=1
8=3
C = 0 eof error

(eof = end of file):

In Example 2 above, why does variable c get the value O? When the input
reaches the end of file, it terminates that last data item, which then contains
"A12." This is evaluated by a routine just like the BASIC VAL function-which
returns a zero since the first character of "A12" is a non-numeric.

END

129

TRS-80 MODEL Ill DISK SYSTEM

In Example 3, when INPUT# goes looking for the second data item, it
immediately encounters a terminator (the comma); therefore, variable B is given
the value zero.

The following table shows how various data images on disk will be read by the
statement:

INPUT#1 ,A$,B$

Ex.# Image on disk Values assigned

1 "ROBERTS,J,"ROBERTS,M,N eof A$:ROBERTS,J.
B$:ROBERTS,M.N.

2 ROBERTS ,JI I ROBERTS ,MIN I (ENTER) A$:ROBERTS
B$:J.

3 THE WORD "QUO 11
, 12345, 788 (ENTER) A$:THE WORD "QUO"

B$:12345.789

4 BYTE~ (ENTER) UNIT OF MEMORY eof A$:BYTE~(ENTER)
UNIT OF MEMORY
B$:null (eof error)

In Example 3, the first data item is an unquoted string, therefore, the double
quotes are not terminators, and become part of A$.

In Example 4, the (ENTER) is preceded by an~. therefore it does not terminate
the first string; both ~ and (ENTER) are included in A$.

LINE INPUT#
Read a Line of Text from Disk

Similar to LINE INPUT from keyboard, this statement reads a "line" of string
data into var$. This is useful when you want to read an ASCII-format BASIC
program file as data, or when you want to read in data without following the
usual restrictions regarding leading characters and terminators.

130

DISK BASIC

LINE INPUT (or LINEINPUT- the space is optional) reads everything from the first
character up to:

1. an (ENTER) character which is not preceded by~

2. the end of file

3. the 255th data character (this 255 character is included in the string)

Other characters encountered-quotes, commas, leading blanks,~ (ENTER)
pairs - are included in the string.

For example, if the data looks like:

10 CLEAR 500 (ENTER)
20 OPEN"I" ,1,"PROG" (ENTER)

then the statement

LINEINPUT#l ,A$

could be used repetitively to read each program line, one line at a time.

PRINT#
Sequential Write to Disk File

This statement writes data sequentially to the specified file. When you first open
a file for sequential output, a pointer is set to the beginning of the file, therefore
your first PRINT# places data at the beginning of the file. At the end of each
PRINT# operation, the pointer advances, so the values are written in sequence.

131

TRS-80 MODEL Ill DISK SYSTEM

A PRINT# statement creates a disk image similar to what a PRINT to display
creates on the screen. Remember this, and you'll be able to set up your PRINT#

list correctly for access by one or more INPUT statements.

PRINT# does not compress the data before writing it to disk; it writes an ASCII

coded image of the data.

For example, if A= 123.45

PRINT#l ,A

will write a nine-byte character sequence onto disk:

123. 45 (ENTER)

The punctuation in the PRINT list is very important. Unquoted commas and semi
colons have the same effect as they do in regular PRINT to display statements.

For example, if A= 2300 and B = 1.303, then

PRINT#l ,A ,B

places the data on disk as

2300 1 • 303 (ENTER)

The comma between A and B in the PRINT# list causes 10 extra spaces in the
disk file. Generally you wouldn't want to use up disk space this way, so you
should use semi-colons instead of commas.

PRINT#l ,A iB

writes the data as:

2300 1,303 (ENTER)

PRINT# with numeric data is quite straightforward- just remember to separate
the items with semi-colons.

PRINT# with string data requires more care, primarily because you have to insert
delimiters so the data can be read back correctly. In particular, you must
separate string items with explicit delimiters if you want to INPUT# them as
distinct strings.

For example, suppose:

A$="JOHN Q, DOE" andB$="100-01-001"

Then:

PRINT#l, AiB

would produce this image on disk:

JOHN Q, DOE100-01-001 (ENTER)

which could not be INPUT back into two variables.

The statement:

132

PR I NT# 1 , A$;" , " iB$

would produce:

JOHN Q, DOE, 100-01-001

which could be INPUT# back into two variables.

DISK BASIC

This method is adequate if the string data contains no delimiters - commas or
(ENTER)- characters. But if the data does contain delimiters or leading blanks
that you don't want to ignore, then you must supply explicit quotes to be written
along with the data. For example, suppose A$= "DOE, JOHN Q," and 5$=" 100
-01-001"

If you use

PRINT#1 ,A$;"," ;5$

the disk image will be:

DOE, JOHN Q, '100-01-001 (ENTER)

When you try to input this with a statement like

INPUT#2,A$,5$

A$ will get the value DOE, and B$ will get JOHN Q. -because of the comma after
DOE in the disk image.

To write this data so that it can be input correctly, you must use the CHR$

function to insert explicit double quotes into the disk image. Since 34 is the
decimal ASCII code for double quotes, use CHR$(34) as follows:

PRINT#1 ,CHR$(34) ;A$jCHR$(34) ;5$

this produces the disk image

"DOE, JOHN Q,"100-01-001 (ENTER)

which can be read with a simple

INPUT#2,A5

Note: You can also use the CHR$ function to insert other delimiters and control
codes into the file, for example:

CHR$(10) ~ Line Feed
CHR$(13) carriage return ((ENTER)character)
CHR$(1 l) or CHR$(12) line-printer top-of-form

USING Option
This option makes it easy to write files in a carefully controlled format.

For example, suppose:

A$="LUDWIG"

133

TRS-80 MODEL Ill DISK SYSTEM

5$= 11 l,JAN 11

C$= II BEETHOl.JEN II

Then the statement

PRINT#1,USING 11 J, 1 , o/., 'X, 11 iAiBiC$

would write the data in nickname form:

L,V,BEET <ENTER>

(In this case, we didn't want to add any explicit delimiters.) See the PRINT USING
description in the LEVEL 11 BASIC Reference Manual for a complete explanation of
the field-specifiers.

Random Access Statements

FIELD
Organize a Random File-Buffer into Fields

r=iit.rf JfiTlflXf,JtzilKfJ1A$Jiii:i:1)11111iixP2AS var2$. · .•• ;J
· Ri118XR.Sfl,cifie~

1i F~JIJ!Om ;;~e~~ fUe buft~r,

nmexp1 specifies the tenuth of the .first field.

var1$ defines a varhtblt name .. for the first field.

nmexp2specilies the length of the second fiel.d.

var2$ defines. a variable name for .. the second field .

. . . Subsequent nmexRAS var$ pairs define other fields lrithe buffer/

Note: the sum of all the fietd•lengtbs:must not exceed the recordlengtlt, anii··t;;··
s.ttouJd equal the record length. · ··

Before FIELDing a buffer, you must use an OPEN statement to assign that buffer
to a particular disk file (you must use random access mode). Then use the FIELD
statement to organize a random file buffer so that you can pass data from BASIC
to disk storage and vice-versa.

Each random file buff er has up to 256 bytes which can store data for transfer
from disk storage to BASIC or from BASIC to disk. (When variable-length files are
used, maximum may be from 1 to 256.) However, you need a way to access this

134

DISK BASIC

buffer from BASIC so that you can either read the data it contains or place new
data in it. The FIELD statement provides the means of access.

You may use the FIELD statement any number of times to "re-organize" a file
buffer. FIELDing a buffer does not clear the contents of the buffer; only the
means of accessing the buffer (the field names) are changed. Furthermore, two
or more field names can reference the same area of the buffer.

Examples
FI ELD 1 , 128 AS A$, 128 AS B$

This statement tells BASIC to assign the first 128 bytes of the buffer to the string
variable A$ and the remaining 128 bytes to B$. If you now print A$ and B$, you
will see the contents of the buffer. Of course, this value would be meaningless
unless you have used GET to read a 256-byte record from disk.

Note: All data- both strings and numbers - must be placed into the buffer in
string form. There are three pairs of functions (MKI$/CVI,MKS$/CVS,MKD$/CVD)
for converting numbers to strings and vice-versa. See "Functions" below.

FIELD 3, 16 AS NM$, 25 AS AD$, 10 AS CY$, 2 AS ST$,7 AS ZP$

The first 16 bytes of buffer 3 are assigned the buffer name NM$; the next 25,
AD$; the next 10, CY$; the next 2, sn and the next 7, ZP$. The remaining 196
bytes of the buffer are not fielded at all.

More on field names

Field names, like NM$,AD$,CY$,ST$, and ZP$, are not string variables in the
ordinary sense. They do not consume the string space available to BASIC.

Instead, they point to the buffer field which you assigned with the FIELD
statement. That's why you can use:

100 FIELD 1,255 AS A$

without worrying about whether 255 bytes of string space are available for A$.

If you use a buffer field name on the left side of an ordinary assignment
statement, that name will no longer point to the buffer field; therefore, you
won't be able to access that field using the previous field name.

For example,

A$=B$

nullifies the effect of the FIELD statement above (line 100).

During random input, the GET statement places data into the 255-byte buffer,
where it can be accessed using the field names assigned to that buffer. During
random output, LSET and RSET place data into the buffer, so you can then PUT
the buffer contents into a disk file.

135

TRS-80 MODEL Ill DISK SYSTEM

Often you'll want to use a dummy variable in a FIELD statement to "pass
over'' a portion of the buffer and start fielding it somewhere in the middle.
For example:

FIELD 1, 18 AS CLIENT$(!), 112 AS HIST$(!)

FIELD 1, 128 AS DUMMY$, 18 AS CLIENT$(2), 112 AS HIST$(2)

In the second FIELD statement, DUMMY$ serves to move the starting position of
CLIENT$(2l to position 129. In this manner, two identical "subrecords" are
defined on buffer number 1. We won't actually use DUMMY$ to place data into
the buffer or retrieve it from the buffer.

The buffer now looks like this:

I 16 I

CL$
(1)

GET

112

HIST$
(1)

DUMMY$

I 16 I
CL$
(2)

112

HIST$
(2)

Read a Record from Disk-Random Access

nme~2 SpeeJj;e~;tii,n record to GET in th.e file; If Otllitte
recent Will be: re~d~

This statement gets a data record from a disk file and places it in the specified
buffer. Before GETting data from a file, you must open the file and assign a
buffer to it. That is, a statement like:

OPEN "R" ,nmexpl ,filespec

is required before the statement:

GET nmexpl ,nmexp2

GET tells BASIC to read record nmexp2 from the file and place it into the nmexpl
buffer. If you omit the record number in GET, BASIC will read the current record.

136

DISK BASIC

The '' current record'' is the record whose number is one higher than that of the
last record accessed. The first time you access a file via a particular buffer, the
current record is set equal to I .

For example:

Program statement
1000 0PEN"R". I, "NAME/BAS"

I0I0FIELD !, ..

1020 GET 1

1025 REM ... ACCESS BUFFER
1030 GET 1,30

1035 REM ... ACCESS BUFFER
1040 GET 1,25

1046 REM ... ACCESS BUFFER
1050 GET!

Effect
Open NAME/BAS for random access

using buffer 1

Structure buffer

GET record I into buff er 1

GET record 30 into buffer I

GET record 25 into buffer 1

GET record 26 into buffer 1

If you are using variable-length records (not fixed-length), an attempt to GET
past the end of file will produce an error.

If you are using fixed-length records, the same attempt will return a null record
and no error will occur. To prevent this from occurring, you can use the L0F
function to determine the number of the highest numbered record.

PUT
Write a Record to Disk-Random Access

nmexJti~i~)fi~~;t~ir;cord number in the me, .11m1r:;A1Jr&:
w"antto:write. If nmexp2 is omitted, the current -~i1:1 .. ,,n1:-,~11 ..,

assumed.

This statement moves data from a file's buffer into a specified place in the file.
Before PUTting data in a file, you must:

1. OPEN the file, thereby assigning a buffer and defining the access mode (must
be R);

137

TRS-80 MODEL Ill DISK SYSTEM

2. FIELD the buffer, so you can

3. place data into the buffer with LSET and RSET statements.

When BASIC encounters the statement:

PUT nmexp,nmexp2

it does the following:

• Gets the information needed to access the disk file

• Checks the access mode for this buffer (must be R)

• Acquires more disk space for the file if necessary to accommodate the record
indicated by nmexp2

• Copies the buff er contents into the specified record of the disk file

• Updates the current record number to equal nmexp2 + 1

The "current record" is the record whose number is one higher than the last
record accessed. The first time you access a file via a particular buffer, the
current record is set equal to 1 .

If the record number you PUT is higher than the end-of-file record number, then
nmexp2 becomes the new end-of-file record number.

LSET and RSET
Place Data in a Random Buff er Field

These two statements let you place character-string data into fields previously
set up by a FIELD statement.

For example, suppose NM$ and AD$ have been defined as field names for a
random file buffer. NM$ has a length of 18 characters, and AD$ has a length of
25 characters.

Now we want to place the following information into the buffer fields so it can
be written to disk:

138

name:
address:

JIM CRICKET, JR,
2000 EAST PECAN ST,

This is accomplished with the two statements:

LSET NM$= 11 JIM CRICKETtJR, II

LSET AD$= 11 2000 EAST PECAN ST, 11

This puts the data in the buffer as follows:

DISK BASIC

JIM CRICKET , JR , \ ~I _2_0_0_0-EA_S_T_P_E_C_A_N_S_T-.---~

NM$ AD$

Note that filler spaces were placed to the right of the data strings in both cases.
If we had used RSET instead of LSET statements, the filler spaces would have
been placed on the left. This is the only difference between LSET and RSET.

For example:

RSET NM$= 11 JIM CRICKET,JR, 11

RSET AD$= 11 2000 EAST PECAN ST, 11

places data in the fields as follows:

JIM CRICKET,JR,

NM$

2000 EAST PECAN ST,

AD$

If a string item is too large to fit in the specified buffer field, it is always
truncated on the right. That is, the extra characters on the right are ignored.

CVD, CVI and CVS
Restore String to Numeric Form

139

TRS-80 MODEL Ill DISK SYSTEM

:'::{)··:
···..-;;~ar~9ter $triJJgrexp$ is typically the'd~ .
tQf Pf :a,nuf6e1ic. siring. If ·LEN(exp$)<4,· an;)

CALL errorOCtlr; if LEN.(exp$}>4, only the first four clJarij~e
use.~. . ..

These functions let you restore data to numeric form after it is read from disk.
Typically the data has been read by a GET statement, and is stored in a random
access file buff er.

The functions cvo, cvr, and cvs are inverses of MKD$, MK!$, and MKS$,
respectively.

For example, suppose the name GROSSPA Y$ references an eight-byte field in
a random-access file buffer, and after GETting a record, GROSSPA Y$ contains a
MKD$ representation of the number 13123. 38.

Then the statement:

PRINT CVDIGROSSPAYSl-TAXES

prints the result of the difference, 13123. 38 - TAXES. Whereas the statement:

PRINT GROSSPAYS-TAXES

will produce a TYPE MISMATCH error, since string values cannot be used in
arithmetic expressions.

Using the same example, the statement

A#=CVDIGROSSPAYSl

assigns the numeric value 13123.38 to the double-precision variable A#.

EOF
End-Of-File Detector

140

DISK BASIC

This function checks to see whether all characters up to the end-of-file marker
have been accessed, so you can avoid INPUT PAST END errors during sequential
input.

Assuming nmexp specifies an open file, then EOF(nmexp) returns O (false) when
the EOF record has not yet been read, and - 1 (true) when it has been read.

Examples

IF EOF(5) THEN PRINT"END OF FILE"FILENM$
IF EOF(NM%) THEN CLOSE NM%

The following sequence of lines reads numeric data from DAT A/TXT into the
array A(). When the last data character in the file is read, the EOF test in line
30 ''passes,'' so the program branches out of the disk access loop, preventing
an INPUT PAST END error from occurring. Also note that the variable I contains
the number of elements input into array A() .

5 DIM A(1121121) 'ASSUMING THIS IS A SAFE l,IALUE
1121 OPEN "I" ,1, "DATA/T>(T"
2121 I o/.,=121
3121 IF EOF(l) THEN 7121
4121 INPUT#l ,A(I'X.l
5121 I'Y.,=I'X,+1
8121 GOTO 3121
7121 REM PROGRAM CONTINUES HERE AFTER DISK INPUT

LOC
Get Current Record Number

LOC is used to determine the current record number, i.e., the number of the last
record read since the file was opened. LOC is only valid after a GET.

Example

PRINT LOC(ll

141

TRS-80 MODEL Ill DISK SYSTEM

Sample Program
1310 A$= "WILLIAM WILSON"
1320 GET 11){: }(=X+l
1330 IF N$ = A$ THEN PR I NT "FOUND IN RECORD" LOC (1) : CLOSE:

END
1340 GOTO 1320

This is a portion of a program. Elsewhere the file has been opened and fielded.
N$ is a field variable. If N$ matches A$ the record number in which it was found
is printed.

LOF
Get End-Of-File Record Number

This function tells you the number of the last, i.e., highest numbered, record
in a file. It is useful for both sequential and random access.

For example, during random access to a pre-existing file, you often need a
way to know when you've read the last valid record. LOF provides a way.

LOF is valid as soon as a previously created file is opened. If a file is extended,
LOF is not valid until a GET is executed.

Examples:
10 OPEN "R" 111 11 UNKNOWN/TXT"
20FIELD11255 AS A$
30 FORI%=1 TO LOF(l)
40 GET 1 ti%
50 PRINT A$
80 NE)<T

In line 30, LOF(l) specifies the highest record number to be accessed.

Note: If you attempt to GET record numbers beyond the end-of-file record, BASIC

simply fills the buffer with hexadecimal zeros, and no error is generated.

142

DISK BASIC

When you want to add to the end of a file, LOF tells you where to start adding:

100 I%=LOFl1l+1 'HIGHEST EXISTING RECORD
110 PUT 1 ti 'X, 'ADD NE>:T RECORD

MKD$, MKI$, and MKS$
Convert Data, Numeric-to-String

These functions change a number to a "string." Actually the byte values which
make up the number are not changed; only one byte, the internal data-type
specifier, is changed, so that numeric data can be placed in a string variable.

That is:

MKD$ returns an eight-byte string.
MK!$ returns a two-byte string.
MKS$ returns a four-byte string.

Examples

LSET TALLYS=MKISII%l

Field name TALLY$ would now contain a two-byte representation of the
integer 1%.

AS=MKISIB/I l

143

TRS-80 MODEL Ill DISK SYSTEM

A$ becomes a two-byte representation of the integer portion of sir. Any
fractional portion is ignored. Note that A$ in this case is a normal string
variable, not a buffer-field name.

Suppose BASEBALL/BAT (a non-standard file extension) has been opened for
random access using buffer 2, and the buffer has been FIELDed as follows:

field:
length:

NM$
16

YRS$
2

AVG$
4

HR$
2

AB$
4

ERNING$
4

NM$ is intended to hold a character string; AVG$, AB$ and ERNING$, converted
single-precision values; YRS$ and HR$, converted integers.

Suppose we want to write the following data record:

SLOW LEARNER played 38 years; lifetime batting average .123;
career homeruns, II; at bats, 32768; ... ,earnings -13.75.

Then we'd use the make-string functions as follows:

1000 LSET NMS="SLOW LEARNER"
1010 LSET YRSS=MKI$(38)
1020 LSET At.JGS=MKS$(, 123)
1030 LSET HRS=MKI$(11l
1040 LSET ABS=MKS$(32768)
1050 LSET ERNINGS=MKSS(-13,75)

After this sequence, you can write SLOW LEARNER's information to disk with
the PUT statement. When you read it back from disk with GET, you will need
to restore the numeric data from string to numeric form, using CVI and cvs
functions.

144

DISK BASIC

Methods of Access
Disk BASIC provides two means of file access:

• Sequential- in which you start reading or writing data at the beginning of
a file; subsequent reads or writes are done at following positions in the file.

• Random - in which you start reading or writing at any record you specify.
(Random access is also called direct access.)

Sequential access is stream-oriented; that is, the number of characters read or
written can vary, and is usuaily determined by delimiters in the data. Random
access is record-oriented; that is, data is always read or written in fixed-length
blocks called records.

To do any input/output to a disk file, you must first open the file. When you
open the file, you specify what kind of access you want:

• o for sequential output
• I for sequential input
• R for random input/output
• E (Extend) for sequential output starting at the end of file.

You also assign a file buffer for BASIC to use during file accesses. This number
can be from 1 to 15, but must not exceed the number of concurrent files you
requested when you started BASIC from TRSDOS. For example, if you started
BASIC with 3 files, you can use buffer numbers 1, 2, and 3. Once you assign a
buffer number to a file, you cannot assign that number to another file until you
Close the first file.

Examples

OPEN "O", 1, "TEST"

Creates a sequential output file named TEST on the first available drive; if TEST

already exists, its previous contents are lost. Buffer 1 will be used for this file.

OPEN "I", 2, "TEST"

Opens TEST for sequential input, using buffer 2.

OPEN "R", 1, "TEST"

Opens TEST for direct access, using buffer 1. If TEST does not exist, it will be
created on the first available drive. Since record length is not specified, 256-byte
records will be used.

OPEN "R", 1, "TEST", 40

Same as preceding example, but 40-byte records will be used.

OPEN "E", 1, "TEST"

Opens TEST sequentially for write and positions to EOF.

145

TRS-80 MODEL Ill DISK SYSTEM

Sequential Access
This is the simplest way to store data in and retrieve it from a file. It is ideal for
storing free-form data without wasting space between data items. You read the
items back in the same order in which they were written.

There are several important points to keep in mind.

1. You must start writing at the beginning of the file. If the data you are seeking
is somewhere inside, you have to read your way up to it.

2. Each time you Open a file for sequential output, the file's previous contents
are lost, unless you use "E" instead of "O" for the mode.

3. To update (change) a sequential file, read in the file and write out the updated
data to a new output file.

4. Data written sequentially usually includes delimiters (markers) to signify
where each data item begins and ends. To read a file sequentially, you must
know ahead of time the format of the data. For example: Does the file consist
of lines of text terminated with carriage returns? Does it consist of numbers
separated by blank spaces? Does it consist of alternating text and numeric
information?

5. Sequential files are always written as Asen-coded text, one byte for each
character of data. For example, the number:

1,2345
requires 8 bytes of disk storage, including the leading and trailing blanks that
are supplied. The text string:

JOHNSON, ROBERT

requires 15 bytes of disk storage.

6. Sequential files are always written with a record length of 256.

Sequential Output: An Example
Suppose we want to store a table of English-to-metric conversion constants:

English unit Metric equivalent

1 inch 2.54001 centimeters
1 mile 1.60935 kilometers
1acre 4046.86 sq. meters
1 cubic inch 0.01638716 liter
1 U.S. gallon 3.785 liters
1 liquid quart 0.9463 liter
1 lb (avoir) 0.45359 kilogram

146

DISK BASIC

First we decide what the data image is going to be. Let's say we want it to look
like this:

english unit t metric unit, factor (ENTER)

For example, the stored data would start out:

IN->CM, 2,54001 (ENTER)

The following program will create such a data file.

Note: x·oo· represents a carriage return.

10 OPEN "O" ,1 ,"METRIC/T)-(T"
20 FOR I%=1 TO 7
30 READ UNIT$, FACTR
40 PRINT:11:1, UNIHi ","; FACTR
50 NE}(T

60 CLOSE
70 DATA IN->CM, 2,54001, MI->KM, 1,60835, ACRE->SQ,KM,

4046,86 E-6
80 DATA CU,IN->LTR, 1.638716E-2, GAL->LTR, 3,785
80 DATA LIQ,QT->LTR, 0,8463, LB->KG, 0,45358

Line 10 creates a disk file named METRIC/TXT, and assigns buffer 1 for sequential
output to that file. The extension !TXT is used because sequential output always
stores the data as ASCII-coded text.

Note: If METRIC/TXT already exists, line 10 will cause all its data to be lost.
Here's why: Whenever a file is opened for sequential output, the end-of-file
(EoF) is set to the beginning of the file. In effect, TRsoos "forgets" that
anything has ever been written beyond this point. To avoid this, you could use E
instead of o in line 10.

Line 40 prints the current contents of UNIT$ and FACTR to the file. Since the
spring items do not contain delimiters, it is not necessary to print explicit quotes
around them. The explicit comma is sufficient.

Line 60 closes the file. The EOF is at the end of the last data item, i.e., 0.45359,
so that later, during input, BASIC will know when it has read all the data.

Sequential Input: An Example
The following program reads the data from METRIC/TXT into two "parallel"
arrays, then asks you to enter a conversion problem.

5 CLEAR 500
10 DIM UN!T$(8), FACTR(8)
20 OPEN" I", 1, "METRIC/T)-(T"
25 Io/.,=0

30 IF EOF(1) THEN 70

'allows for UP to 10 data Pairs

40 INPUT#1, UN!T$(I'Y.,) ,FACTR(I'Y.,)

147

TRS-80 MODEL Ill DISK SYSTEM

50 Io/.,=I'.Y..+1
80 GOHl 30
70 CLOSE Conversion factors have been read-in
100 CLS: PRINT TAB(5)"*** En9'lish to Metric Coni.Jersions ***"
110 FOR ITEM%=0 TO I%-1
120 PRINT TAB(8) iUSING" (:11::11:

UN IT$ (ITEM'X,)
130 ND(T
140 PRINT@ 704, "Which conversion (0-8)"i
150 INPUT CHOICE%
180 INPUT"Enter En9'lish 'Htantit,·" ;t.i

II; ITEM'.Y..'

170 PRINT"The Metric e9uii,ialent is" l.J*FACTR(CHOICE%)
180 INPUT"Press <ENTER> to continue" i>(

180 PRINT@ 704, CHR$(31) 'clear to end of fra111e
200 GOTO 140

Line 20 opens the file for sequential input. Input begins at the beginning of
the file.

Line 30 checks to see that the end-of-file record hasn't been reached. If it has,
control branches from the disk input loop to the part of the program that uses
the newly acquired data.

Line 40 reads a value into the string array UNIT$(), and a number into the
single-precision array FACTR(). Note that this INPUT list parallels the PRINT# list
that created the data file (see the section "Sequential Output: An Example").
This parallelism is not required, however. We could just as successfully have
used:

40 INPUT:11:1, UNIT$(I'X.): INPUT:11:1,FACTR(I'.Y..)

How to update a file
Suppose you want to add more entries into the English-Metric conversion file.
You could simply re-Open the file with mode = E and PRINT# the extra data.
Or, you might want to leave the old file intact and output a new file:

1. Open the file for sequential input (Mode = I)

2. Open another new data file for sequential output (Mode = o)

3. Input a block of data and update the data as necessary

4. Output the data to the new file

5. Repeat steps 3 and 4 until all data has been read, updated, and output to the
new file; then go to step 6

6. Close both files

148

DISK BASIC

Sequential Line Input: An Example
Using the line-oriented invut, you can write programs that edit other BASIC
program files: renumber them, change LPRINTs to PRINTS, etc. -as long as these
''target'' programs are stored in ASCII format.

The following program counts the number of lines in any ASCII - format BASIC
disk file with the extension !TXT.

10 CLEAR 300
20 IN PUT II WHAT IS THE NAME OF THE PROGRAM II i PROG$
30 IF INSTR(PROG$, 11 /T)-(T 11)=0 THEN 110 'reciuire /T>(T extension
40 OPEN 11 I 11

, 1, PROG$
50 I'X,=0
60 IF EOF(1l THEN 90
70 I%=I'X,+1: LINE INPUT#1, TEMP$
80 GOTO 60
90 PR I NT PROG$ 11 IS II I 'X, 11 LINES LONG. 11

100 CLOSE: GOTO 20
110 PR I NT II FI LES PEC MUST INCLUDE THE ENTENS I ON '/ T>(T' 11

120 GOTO 20

For BASIC programs stored in ASCII, each program line ends with a carriage
return character not preceded by a line feed. So the LINE INPUT in line 70
automatically reads one entire line at a time, into the variable TEMP$. Variable
I% actually does the counting.

To try out the program, first save any BASIC program using the A (ASCII) option
(See SAVE). Use the extension ITXT.

149

TRS-80 MODEL Ill DISK SYSTEM

Random Access Techniques
Random access offers several advantages over sequential access:

• Instead of having to start reading at the beginning of a file, you can read any
record you specify.

• To update a file, you don't have to read in the entire file, update the data, and
write it out again. You can rewrite or add to any record you choose, without
having to go through any of the other records.

• Random access is more efficient- data takes up less space and is read and
written faster.

• Opening a file for direct access allows you to write and read from the file via
the same buffer.

• Random access provides many powerful statements and functions to structure
your data. Once you have set up the structure, direct input/output becomes
quite simple.

The last advantage listed above is also the "hard part" of direct access. It takes
a little extra thought.

For the purposes of direct access, you can think of a disk file as a set of boxes
-like a wall of post-office boxes. Just like the post office receptacles, the file
boxes are numbered. We call these boxes "records."

You can place data in any record, or read the contents of any record, with
statements like:

PUT 1 , 5 write buffer-I contents to record 5

GET 1 , 5 read the contents of record 5 into buffer- I

In Figure 14, we assume a record length of 256.

~~
r I I I I I

(a~:s) (JMs) (JJi.ts) (a~~) (J~)

RECORDS IN DISK FILE

Figure 14. GET and PUT.

150

"PUT1 ,5"

"GET 1,5"

1/0 BUFFERS IN RAM

DISK BASIC

The buffer is a waiting area for the data. Before writing data to a file, you must
place it in the buffer assigned to the file. After reading data from a file, you
must retrieve it from the buffer.

As you can see from the sample PUT and GET statements above, data is passed to
and from the disk in records. The size of each record is determined by an Open
statement.

Storing Data in a Buffer

You must place the entire record into the buffer before putting its contents into
the disk file.

This is accomplished by 1) dividing the buffer up into fields and naming them,
then 2) placing the string or numeric data into the fields.

For example, suppose we want to store a glossary on disk. Each record will
consist of a word followed by its definition. We start with:

112ll2l OPEN"R", 1, "GLOSSARY/BAS"
1112) FIELD 1, 16 AS WO$, 240 AS MEANING$

Line 100 opens a file named GLOSSARY/BAS (creates it if it doesn't already exist);
and gives buffer 1 direct access to the file.

Line 110 defines two fields onto buff er 1:

WD$ consists of the first 16 bytes of the buffer;
MEANING$ consists of the last 240 bytes.

WD$ and MEANING$ are now field-names

What makes field names different? Most string variables point to an area in
memory called the string space. This is where the value of the string is stored.

Field names, on the other hand, point to the buffer area assigned in the FIELD

statement. So, for example, the statement:

112) PR I NT WO$; " : " ; MEAN I NG$

displays the contents of the two buffer fields defined above.

These values are meaningless unless we first place data in the buffer. LSET, RSET

and GET can all be used to accomplish this function. We'll start with LSET and
RSET, which are used in preparation for disk output.

Our first entry is the word "left-justify" followed by its definition.

112ll2l OPEN"R", 1, "GLOSSARY/BAS"
110 FI ELD 1 , 1 G AS WO$, 240 AS MEAN I NG$
120 LSET WD$="LEFT-JUSTIFY"
130 LSET MEANING$="TO PLACE A VALUE IN A FIELD FROM LEFT TO

RIGHTi IF THE DATA DOESN'T FILL THE FIELD, BLANKS ARE
ADDED ON THE RIGHTi IF THE DATA IS TOO LONG, THE EXTRA

151

TRS-80 MODEL Ill DISK SYSTEM

CHARACTERS ON THE RIGHT ARE IGNORED, LSET IS A LEFT
JUST I FY FUNCTION,"

Line 120 left-justifies the value in quotes into the first field in buffer 1. Line 130
does the same thing to its quoted string.

Note: RSET would place filler-blanks to the left of the item. Truncation would
still be on the right.

Now that the data is in the buffer, we can write it to disk with a simple PUT

statement:

140 PUT 1 t1
150 CLOSE

This writes the first record into the file GLOSSARY/BAS.

To read and print the first record in GLOSSARY/BAS, use the following sequence:

180 OPEN"R", 1, "GLOSSARY/BAS"
170 FIELD 1, 18 AS WD$, 240 AS MEANING$
180 GET 1 t1
180 PRINT WD$: PRINT MEANING$
200 CLOSE

Line 160 and 170 are required only because we closed the file in line 150. If we
hadn't closed it, we could go directly to line 180.

152

~-

Random Access: A General
Procedure

DISK BASIC

The previous example shows the necessary sequences to read and write using
random access. But it does not demonstrate the primary advantages of this form
of access-in particular, it doesn't show how to update existing files by going
directly to the desired record.

The program below, GLOSSACC/BAS, develops the glossary example to show
some of the techniques of random access for file maintenance. But before
looking at the program, study this general procedure for creating and
maintaining files via random access.

Step

1 . Open the file
2. Field the buffer
3. Get the record to be updated
4. Display current contents of the record (use

CVD, CVI, CVS before displaying numeric
data)

5. LSET and RSET new values into the fields
(use MKD$, MKI$, MKS$ with numeric data
before setting it into the buffer)

6. PUT the updated record
7. To update another record, continue at step 3.

Otherwise, go to step 8.
8. Close the file

10 REM •••••• GLOSSACC/BAS ,,,
100 CLS : CLEAR 300
110 OPEN "R", 1, "GLOSSARY/BAS"

See GLOSSACC/BAS,
Line Number

110
120
140

145-170

210-230

240
250-260

270

120 FIELD 1, 16 AS WDS, 238 AS MEANINGS, 2 AS NXS
130 INPUT "WHAT RECORD DO YOU WANT TO ACCESS"; Ro/.,
140 GET 1, R'X
145 NX% = CVIINXSl 'SAVE LINK TO NEXT ALPHABETICAL ENTRY
150 PRINT "WORD : "WDS
160 PRINT "DEF'N : " : PRINT MEANINGS
1 70 PR I NT II NDT AL PH ABET I CAL ENTRY: RECORD :11: 11 Nl-(X, : PR I NT
180 WS = 1111 INPUT "TYPE NEW WORD <ENTER> OR <ENTER> IF OK"i

ws
190 DS =

OK?"
200 INPUT
210 IF ws
220 IF DS

1111 PRINT "TYPE NEW DEF'N <ENTER> OR <ENTER> IF
: LINE INPUT DS

"TYPE NEW SEQUENCE NUMBER OR <ENTER> IF OK" j N)-(o/.,
,:; .> II II THEN LSET WDS = WS
• .• / II II THEN LSET MEAN I NG$ = DS

153

TRS-80 MODEL Ill DISK SYSTEM

230 LSET NXS = MKIS INX%1
240 PUT 1 , R'X,
245 R% = NX% 'USE NEXT ALPHA, LINK AS DEFAULT FOR NEXT RECORD
250 CLS : PRINT "TYPE (ENTER> TO READ NEXT ALPHA, ENTRY,":

PRINT" OR RECORD # <ENTER> FOR SPECIFIC ENTRY,": INPUT "
OR 0 <ENTER> TO QUIT"; R%

260 IF 0<R'X, THEN 140
270 CLOSE
280 END

Notice we've added a field, NX$, to the record (line 120). NX$ will contain the
number of the record which comes next in alphabetical sequence. This enables
us to proceed alphabetically through the glossary, provided we know which
record contains the entry which should come first.

For example, suppose the glossary contains:

record# word (WO$) defn,
pointer to next

alpha. entry (NX$)

1 LEFT-JUSTIFY ... 3
2 BYTE ... 4
3 RIGHT-JUSTIFY ... 0
4 HEXADECIMAL ... 1

When we read record 2 (BYTE), it tells us that record 4 (HEXADECIMAL) is next,
which then tells us record 1 (LETT-JUSTIFY) is next, etc. The last entry, record 3
(RIGHT-JUSTIFY), points us to zero, which we take to mean "The End."

Since NX$ will contain an integer, we have to first convert that number to a two
byte string representation, using MKI$ (line 230 above).

The following program displays the glossary in alphabetical sequence:

300 REM ••• GLOSSOUT/BAS •••
310 CLS : CLEAR 300
320 OPEN "R 11

, 1 , "GLOSSARY /BAS"
330 FIELD 1, 16 AS WDS, 238 AS MEANINGS, 2 AS NXS
340 IN PUT II WHICH RECORD IS FIRST ALPHABETICALLY" ; No/.,
350 GET 1 , N'X,
360 PRINT : PRINT WDS
370 PRINT MEANINGS
380 N% = CVIINXSI
3EH1l INPUT "PRESS <ENTER> TO CONT I NUE";)-(
400 IF N% <> 0 THEN 350
410 CLOSE
ll20 END

154

DISK BASIC

Disk BASIC Error Codes/Messages
51 Field overflow
52 Internal error
53 Bad file number
54 File not found
55 Bad file mode
58 Disk vo error
62 Disk full
63 Input past end
64 Bad record number
65 Bad file name
67 Direct statement in file
68 Too many files
69 Disk write-protect
70 File access

Note: Disk errors cannot be simulated via the ERROR statement.

155

Index

Subject Page
Abbreviate . 14
APPEND 26
ASCII 26, 53
ATTRIB 10, 24, 27, 60
AUTO 29, 72
BACKUP 8, 25, 57, 67
BASIC 17
BASIC* 91
Baud 12, 62
Bits i, 62
BKSPC 82
(BREAK) 29, 31, 44, 96
Buffer 91, 123
BUILD 29, 31, 45, 57
Byte i, 18, 62, 74
Cable (Ribbon) 1, 2
Cass? 12
CLEAR 31, 32, 45, 72
CLOCK 33
CLOSE 125
CLOAD 63
CLS 33
CMD"A" 93, 95
CMD"B" 93, 96
CMD"C" 93, 96
CMD"D" 93, 97
CMD"E" 93, 98
CMD"I" 93, 98
CMD"J" 93, 99
CMD"L" 93, 100
CMD"O" 93, 101
CMD"P" 93, 102
CMD"R" 93,103
CMD"S" 93,103
CMD"T" 93, 104
CMD"X" 93, 104
CMD"Z" 93,105
Commands

Auto 29-30
Entering . 20
Forms of 21

Subject Page
Library . 26-66
Syntax 20
Utility . 67-89

CONVERT 8, 10, 25, 68
COPY 34, 50
CREATE 35
CSAVE 63
CVD, CVI, CVS 139-40
Data Diskette See Diskette
DATE 36, 37
DCB 76
DEBUG 37
DEF FN 93, 106
Definitions

Comments 21-2
Delimiter 22
Filename 21-2
Options 22

DEF USR 93, 108
DIR 25, 27, 44
Disk BASIC

Abbreviations . 95
Instructions 11, 12
Starting 11, 91-2

Disk Drive
O and 1 1, 4, 6, 1 O, 34, 55
2, 3 (External) 1, 4
Expansion . 1 , 4
Installation 1, 4

Diskette
Care 5
Data i, 24
Description . 5
Inserting 5, 7
Labelling . 6
Notch-protect . 5
Organization 74
Specifications . 15
System i, 6, 24

DIVIDE 83
DMULT 84
DO 31, 32, 46, 57, 71
Drive Specification . 23
DUAL 47
DUMP 48, 54, 59

157

TRS-80 MODEL Ill DISK SYSTEM

Subject Page Subject Page

EOF (End-of-file) 45, 75, 140-1 Memory Size? 11
ERROR 49 MEMTEST 72
Error 13 MERGE 119

Disk BASIC . 155 MID$ 93, 111
TRSDOS 90 MKD$, MK!$, MKS$ 143-4

Extents See Technical Information NAME 93, 112
FIELD 134-6 NEW 11
File

Access 116, 123, 145
APPEND 26
COPY 34

Notations/ Abbreviations 14
Octal 93, 94
OPEN 123, 4

Manipulation 116, 118 Operation . 4
System vs User . 25 Password 8, 24,25, 27
Variable Length 91 57,60,67,69

Filename 23, 44 Access 27
File Specification . 22
FILPTR 85

Changing 27
Master 9, 25

FORMAT 8, 9, 25, 70
FORMS 49
FREE 35, 50
GET 136-7
Granules

Allocation . 50

Protecting 69
Update 27

PATCH 12, 55
PAUSE 56
POSEOF 82
POSN 79

Defined 74 Power On/Off 4, 30
Number of 45, 51, 74 PRINT# 131-3

HELP 51, 53 Printer 31, 47, 105
HERZ50 71 Programming ii, 11
Hexadecimal 32, 38, 41, 48, 53 PROT 10, 25, 57

55,59,93,94 PURGE 25, 58
INIT 78 PUT 137-8
INPUT# 126-30 PUTEXT 81
Installation 1-3
INSTR 93, 108

RAM 18, 32, 40, 64, 71, 73
RAMDIR 84

1/0 32, 61 Random File Access 150-4
1/0 Calls 75, 77-89 General Procedure 153
KILL 52, 118 Techniques 150
LSET 138-9 READ 70
LIB 53 Record Length 35, 45
LINE INPUT 110, 93
LINE INPUT# 130-1
LIST 53
LOAD 12, 54, 118
Load 11
LOC 141-2

Logical Length 26, 35, 45, 76
Number of 45, 77
Physical . 77

RELO 59
RENAME 35, 60
Reset 30, 73

Location 4
LOF 142 REWIND 82
LPC 71 ROM 73
Maintenance . 13 ROUTE 47, 61
MASTER 55, 64 RSET 138-9
Memory

Display 38
Map 19

RS-232-C . 62
RUN 120

User 38, 59 SAVE 11, 121

158

Subject Page

Save 11
Sector 77
SETCOM 62
Sequential File Access 146-149

Sequentiallnput 147
Sequential Line Input 149
Sequential Output . 146

Starting
Auto 29
Disk BASIC . 11
System 6
TRSDOS 7

Specifications . 15
System Diskette See "Diskette"
Syntax 83
TAPE 63
TIME 64
Troubleshooting 7, 13
TRSDOS

Definition . 17-19
Start-up 7
Using 20

USING . 133-4
USRn 93, 113
VERF 81
Video output 47, 105
WP 65
WRITE 80-1
Write-protect notch . 5
XFERSYS 73
Z-80 37, 39, 40, 41, 48

55,56, 63
&H and &O 93-4

Subject Page

Figures and Tables
A Diskette . 5
Connection of the External Disk Cable

to the Model Ill 2
Connection of External Disk Drives 3
Directory Listing (DIR) 45
External Disk Cable with

Plugs Labeled . 2
Free Map (FREE) 51
Full-Screen Format (DEBUG) 43
GET and PUT . 150
Half-Screen Format (DEBUG) 40
Input Process (INPUT) 129
Inserting a Diskette . 7
Model 111 Disk System

with External Drives . 4
TRSDOS Memory Map . 19
TRSDOS Roles . 19

159

TRS-80 MODEL Ill DISK SYSTEM

Radio Shack Software License
The following are the terms and conditions of the Radio Shack Software License for
copies of Radio Shack software either purchased by the customer. or received with
or as part of hardware purchased by customer:

A. Radio Shack grants to CUSTOMER a personal. non-exclusive. paid up license to
use the Radio Shack computer software programs received. Title to the media
on which the software is recorded (cassette and/or disk) or stored (ROM) is
transferred to the CUSTOMER. but not title to the software.

B. In consideration for this license. CUSTOMER shall not reproduce copies of such
software programs except to produce the nu111ber of copies required for
personal use by CUSTOMER (if the software allows a backup copy to be made).
and to include Radio Shack ·s copyright notice on all copies of progra111s
reproduced in whole or in part.

C. CUSTOMER may resell Radio Shack's system and applications software
(modified ornot. in whole or in part). provided CUSTOMER has purchased one
copy of the software foreac~ one resold. The provisions of this Software
License (paragraphs A. B. and C) shall also be applicable to third parties

purchasing such software from CUSTOMER.

Important Note
All Radio Shack computer programs are licensed on an "as is" basis without
warranty.

Radio Shack shall have no liability or responsibility to custo111er or any other person
or entity with respect to any liability. lm,s or damage caused or alleged to be caused

directly or indirectly by computer equipment or programs sold by Radio Shack.
including but not limited to any interruption of service. loss of business or
anticipatory profih or consequential damages resulting from the use or operation of

such computer or computer programs.

Good data processing procedure dictates that the user test the program. run and test
sample sets of data. and run the system in parallel with the system previously in use

for a period of time adequate to insure that results of operation of the computer or
program are satisfactory.

160

,,.,,.-.....,

Service Policy
Radio Shack's nationwide network of service facilities provides quick, convenient.
and reliable repair services for all of its computer products, in most instances.
Warranty service will be performed in accordance with Radio Shack's Limited
Warranty. Non-warranty service will be provided at reasonable parts and labor
costs.

Because of the sensitivity of computer equipment, and the problems which can
result from improper servicing, the following limitations also apply to the services
offered by Radio Shack:

1. If any of the warranty seals on any Radio Shack computer products are broken,
Radio Shack reserves the right to refuse to service the equipment or to void any
remaining warranty on the equipment.

2. If any Radio Shack computer equipment has been modified so that it is not
within manufacturer's specifications, including, but not limited to, the
installation of any non-Radio Shack parts, components, or replacement boards,
then Radio Shack reserves the right to refuse to service the equipment, void any
remaining warranty, remove and replace any non-Radio Shack part found in the
equipment, and perform whatever modifications are necessary to return the
equipment to original factory manufacturer's specifications.

3. The cost for the labor and parts required to return the Radio Shack computer
equipment to original manufacturer's specifications will be charged to the
customer in addition to the normal repair charge.

161

IMPORTANT NOTICE
ALL RADIO SHACK COMPUTER PROGRAMS ARE LICENSED ON AN
"AS IS" BASIS WITHOUT WARRANTY.

Radio Shack shall have no liability or responsibility to customer or any
other person or entity with respect to any liability, loss or damage caused
or alleged to be caused directly or indirectly by computer equipment or
programs sold by Radio Shack, including but not limited to any interrup
tion of service, loss of business or anticipatory profits or consequential
damages resulting from the use or operation of such computer or
computer programs.
NOTE: Good data processing procedure dictates that the user test the

program, run and test sample sets of data, and run the system in
parallel with the system previously in use for a period of time
adequate to insure that results of operation of the computer or
program are satisfactory.

RADIO SHACK SOFTWARE LICENSE
A. Radio Shack grants to CUSTOMER a non-exclusive, paid up license to
use on CUSTOMER'S computer the Radio Shack computer software
received. Title to the media on which the software is recorded (cassette
and/or disk) or stored (ROM) is transferred to the CUSTOMER, but not
title to the software.

B. In consideration for this license, CUSTOMER shall not reproduce
copies of Radio Shack software except to reprod•JCe the number of copies
required for use on CUSTOMER'S computer (if the software allows a
backup copy to be made), and shall include Radio Shack's copyright
notice on all copies of software reproduced in whole or in part.

C. CUSTOMER may resell Radio Shack's system and applications soft
ware (modified or not, in whole or in part), provided CUSTOMER has
purchased one copy of the software for each one resold. The provisions
of this software License (paragraphs A, B, and C) shall also be applicable
to third parties purchasing such software from CUSTOMER.

LIMITED WARRANTY
For a period of 90 days from the date of delivery, Radio Shack warrants to the
original purchaser that the computer hardware unit shall be free from manufac
turing defects. This warranty is only applicable to the original purchaser who
purchased the unit from Radio Shack company-owned retail outlets or duly
authorized Radio Shack franchisees and dealers. This warranty is voided if the
unit is sold ortransferred by purchaser to a third party. This warranty shall be
void if this unit's case or cabinet is opened, if the unit has been subjected to
improper or abnormal use, or if the unit is altered or modified. If a defect occurs
during the warranty period, the unit must be returned to a Radio Shack store,
franchisee, or dealer for repair, along with the sales ticket or lease agreement.
Purchaser's sole and exclusive remedy in the event of defect is limited to the
correction of the defect by adjustment, repair, replacement, or complete
refund at Radio Shack's election and sole expense. Radio Shack shall have no
obligation to replace or repair expendable items.

Any statements made by Radio Shack and its employees, including but not
limited to, statements regarding capacity, suitability for use, or performance of
the unit shall not be deemed a warranty or representation by Radio Shack for
any purpose, nor give rise to any liability or obligation of Radio Shack.

EXCEPT AS SPECIFICALLY PROVIDED IN THIS WARRANTY OR IN THE
RADIO SHACK COMPUTER SALES AGREEMENT, THERE ARE NO
OTHER WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL RADIO
SHACK BE LIABLE FOR LOSS OF PROFITS OR BENEFITS, INDIRECT,
SPECIAL, CONSEQUENTIAL OR OTHER SIMILAR DAMAGES ARISING
OUT OF ANY BREACH OF THIS WARRANTY OR OTHERWISE.

7-80

RADIO SHACK 11 A DIVISION OF TANDY CORPORATION

U.S.A.: FORT WORTH, TEXAS 76102
CANADA: BARRIE, ONTARIO L4M 4W5

TANDY CORPORATION

AUSTRALIA BELGIUM U.K.

' _,j

:I

I
~;~

I :
\

I
I
\

:--;J
' \
I

'

~

1
,,,\1.

:
' \

~

-
'·-'·,

'.' ..
-
-

~

I
-~

i
\

.

/4

i
:,---.

:

-

' - '~, i - ~;
I
(.\
' _.\

280-316 VICTORIA ROAD
RYDALMERE, N.S.W. 2116

PARC INDUSTRIEL DE NANINNE
5140 NANINNE

HILSTON ROAD WEDNESBURY
WEST MIDLANDS WS10 7JN

8749167-581-SP PRINTED IN U.S.A.

